[2] Antczak, T.:
Exact penalty functions method for mathematical programming problems involving invex functions. Europ. J. Oper. Res. 198 (2009), 29-36.
DOI |
MR 2508030
[3] Antczak, T.:
The exact l$_1$ penalty function method for constrained nonsmooth invex optimization problems. In: System Modeling and Optimization Vol. 391 of the series IFIP Advances in Information and Communication Technology (2013) (D. Hömberg and F. Tröltzsch, eds.), pp. 461-470.
DOI |
MR 3409747
[4] Antczak, T.:
Exactness property of the exact absolute value penalty function method for solving convex nondifferentiable interval-valued optimization problems. J. Optim. Theory Appl. 176 (2018), 205-224.
DOI |
MR 3749691
[5] Antczak, T.:
Optimality conditions and duality results for nonsmooth vector optimization problems with the multiple interval-valued objective function. Acta Math. Scientia 37 (2017), 1133-1150.
DOI |
MR 3657212
[6] Antczak, T., Farajzadeh, A.:
On nondifferentiable semi-infinite multiobjective programming with interval-valued functions. J. Industr. Management Optim. 19(8) (2023), 1-26.
DOI |
MR 4562617
[7] Antczak, T., Studniarski, M.:
The exactness property of the vector exact $l_1$ penalty function method in nondifferentiable invex multiobjective programming. Functional Anal. Optim.37 (2016), 1465-1487.
DOI |
MR 3579015
[8] Bazaraa, M. S., Sherali, H. D., Shetty, C. M.:
Nonlinear Programming: Theory and Algorithms. John Wiley and Sons, New York 1991.
MR 0533477 |
Zbl 1140.90040
[10] Bertsekas, D. P., Koksal, A. E.: Enhanced optimality conditions and exact penalty functions. In: Proc. Allerton Conference, 2000.
[12] Clarke, F. H.:
Optimization and Nonsmooth Analysis. Wiley, New York 1983.
MR 0709590
[13] Fletcher, R.:
An exact penalty function for nonlinear programming with inequalities. Math. Programm. 5 (1973), 129-150.
DOI |
MR 0329644
[14] Ha, N. X., Luu, D. V.:
Invexity of supremum and infimum functions. Bull. Austral. Math. Soc. 65 (2002), 289-306.
DOI |
MR 1898543
[16] Jayswal, A., Stancu-Minasian, I., Ahmad, I.:
On sufficiency and duality for a class of interval-valued programming problems. Appl. Math. Comput. 218 (2011), 4119-4127.
DOI |
MR 2862082
[17] Jayswal, A., Banerjee, J.:
An exact l$_1$ penalty approach for interval-valued programming problem. J. Oper. Res. Soc. China 4 (2016), 461-481.
DOI |
MR 3572965
[18] Mangasarian, O. L.:
Sufficiency of exact penalty minimization. SIAM J. Control Optim. 23 (1985), 30-37.
DOI |
MR 0774027
[20] Moore, R. E.:
Interval Analysis. Prentice-Hall, Englewood Cliffs 1966.
MR 0231516
[21] Moore, R. E.:
Methods and applications of interval analysis. Soc. Industr. Appl. Math., Philadelphia 1979.
MR 0551212
[22] Pietrzykowski, T.:
An exact potential method for constrained maxima. SIAM J. Numer. Anal. 6 (1969), 299-304.
DOI |
MR 0245183
[23] Reiland, T. W.:
Nonsmooth invexity. Bull. Austral. Math. Soc. 42 (1990), 437-446.
DOI |
MR 1083280
[24] Khatri, S., Prasad, A. K.:
Duality for a fractional variational formulation using $\eta $-approximated method. Kybernetika 59(5) (2023), 700-722.
DOI |
MR 4681018
[26] Wu, H. C.:
The Karush-Kuhn-Tucker optimality conditions in an optimization problem with interval-valued objective function. Europ, J. Oper. Res. 176 (2007), 46-59.
DOI |
MR 2265133
[27] Wu, H. C.:
Wolfe duality for interval-valued optimization. J. Optim. Theory Appl. 138 (2008), 497-509.
DOI |
MR 2429694
[28] Zangwill, W. I.:
Non-linear programming via penalty functions. Management Sci. 13 (1967), 344-358.
DOI |
MR 0252040
[29] Zhang, J.:
Optimality condition and Wolfe duality for invex interval-valued nonlinear programming problems. J. Appl. Math. Article ID 641345 (2013).
DOI |
MR 3142560
[30] Zhou, H. C., Wang, Y. J.:
Optimality condition and mixed duality for interval-valued optimization. Fuzzy Inform. Engrg.2 (2009), 1315-1323.
DOI |
MR 2429694