Previous |  Up |  Next

Article

Title: Exact l$_1$ penalty function for nonsmooth multiobjective interval-valued problems (English)
Author: Khatri, Julie
Author: Prasad, Ashish Kumar
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 60
Issue: 5
Year: 2024
Pages: 652-681
Summary lang: English
.
Category: math
.
Summary: Our objective in this article is to explore the idea of an unconstrained problem using the exact l$_1$ penalty function for the nonsmooth multiobjective interval-valued problem (MIVP) having inequality and equality constraints. First of all, we figure out the KKT-type optimality conditions for the problem (MIVP). Next, we establish the equivalence between the set of weak LU-efficient solutions to the problem (MIVP) and the penalized problem (MIVP$_\rho$) with the exact l$_1$ penalty function. The utility of this transformation lies in the fact that it converts constrained problems to unconstrained ones. To accurately predict the applicability of the results presented in the paper, meticulously crafted examples are provided. (English)
Keyword: interval-valued problem
Keyword: multiobjective programming
Keyword: exact l$_1$ penalty function
Keyword: LU-efficient solution
MSC: 49J52
MSC: 49M30
MSC: 90C29
MSC: 90C46
DOI: 10.14736/kyb-2024-5-0652
.
Date available: 2025-01-02T15:51:06Z
Last updated: 2025-01-10
Stable URL: http://hdl.handle.net/10338.dmlcz/152719
.
Reference: [1] Antczak, T.: $(p,r)$-invex sets and functions..J. Math. Anal. Appl. 263 (2001), 355-379. MR 1866053, 10.1006/jmaa.2001.7574
Reference: [2] Antczak, T.: Exact penalty functions method for mathematical programming problems involving invex functions..Europ. J. Oper. Res. 198 (2009), 29-36. MR 2508030,
Reference: [3] Antczak, T.: The exact l$_1$ penalty function method for constrained nonsmooth invex optimization problems..In: System Modeling and Optimization Vol. 391 of the series IFIP Advances in Information and Communication Technology (2013) (D. Hömberg and F. Tröltzsch, eds.), pp. 461-470. MR 3409747,
Reference: [4] Antczak, T.: Exactness property of the exact absolute value penalty function method for solving convex nondifferentiable interval-valued optimization problems..J. Optim. Theory Appl. 176 (2018), 205-224. MR 3749691,
Reference: [5] Antczak, T.: Optimality conditions and duality results for nonsmooth vector optimization problems with the multiple interval-valued objective function..Acta Math. Scientia 37 (2017), 1133-1150. MR 3657212,
Reference: [6] Antczak, T., Farajzadeh, A.: On nondifferentiable semi-infinite multiobjective programming with interval-valued functions..J. Industr. Management Optim. 19(8) (2023), 1-26. MR 4562617,
Reference: [7] Antczak, T., Studniarski, M.: The exactness property of the vector exact $l_1$ penalty function method in nondifferentiable invex multiobjective programming..Functional Anal. Optim.37 (2016), 1465-1487. MR 3579015,
Reference: [8] Bazaraa, M. S., Sherali, H. D., Shetty, C. M.: Nonlinear Programming: Theory and Algorithms..John Wiley and Sons, New York 1991. Zbl 1140.90040, MR 0533477
Reference: [9] Ben-Israel, A., Mond, B.: What is invexity..J. Austral. Math. Soc. Series B 28 (1986). 1-9. MR 0846778, 10.1017/S0334270000005142
Reference: [10] Bertsekas, D. P., Koksal, A. E.: Enhanced optimality conditions and exact penalty functions..In: Proc. Allerton Conference, 2000.
Reference: [11] Craven, B. D.: Invex functions and constrained local minima..Bull. Austral. Math. Soc. 24 (1981), 357-366. MR 0647362, 10.1017/S0004972700004895
Reference: [12] Clarke, F. H.: Optimization and Nonsmooth Analysis..Wiley, New York 1983. MR 0709590
Reference: [13] Fletcher, R.: An exact penalty function for nonlinear programming with inequalities..Math. Programm. 5 (1973), 129-150. MR 0329644,
Reference: [14] Ha, N. X., Luu, D. V.: Invexity of supremum and infimum functions..Bull. Austral. Math. Soc. 65 (2002), 289-306. MR 1898543,
Reference: [15] Hanson, M. A.: On sufficiency of the Kuhn-Tucker conditions..J. Math. Anal. Appl. 80 (1981), 545-550. MR 0614849, 10.1016/0022-247X(81)90123-2
Reference: [16] Jayswal, A., Stancu-Minasian, I., Ahmad, I.: On sufficiency and duality for a class of interval-valued programming problems..Appl. Math. Comput. 218 (2011), 4119-4127. MR 2862082,
Reference: [17] Jayswal, A., Banerjee, J.: An exact l$_1$ penalty approach for interval-valued programming problem..J. Oper. Res. Soc. China 4 (2016), 461-481. MR 3572965,
Reference: [18] Mangasarian, O. L.: Sufficiency of exact penalty minimization..SIAM J. Control Optim. 23 (1985), 30-37. MR 0774027,
Reference: [19] Martin, D. H.: The essence of invexity..J. Optim. Theory Appl. 42 (1985), 65-76. MR 0802390, 10.1007/BF00941316
Reference: [20] Moore, R. E.: Interval Analysis..Prentice-Hall, Englewood Cliffs 1966. MR 0231516
Reference: [21] Moore, R. E.: Methods and applications of interval analysis..Soc. Industr. Appl. Math., Philadelphia 1979. MR 0551212
Reference: [22] Pietrzykowski, T.: An exact potential method for constrained maxima..SIAM J. Numer. Anal. 6 (1969), 299-304. MR 0245183,
Reference: [23] Reiland, T. W.: Nonsmooth invexity..Bull. Austral. Math. Soc. 42 (1990), 437-446. MR 1083280,
Reference: [24] Khatri, S., Prasad, A. K.: Duality for a fractional variational formulation using $\eta $-approximated method..Kybernetika 59(5) (2023), 700-722. MR 4681018,
Reference: [25] Weir, T., Jeyakumar, V.: A class of nonconvex functions and mathematical programming..Bull. Austral. Math. Soc. 38 (1988), 177-189. MR 0969907, 10.1017/S0004972700027441
Reference: [26] Wu, H. C.: The Karush-Kuhn-Tucker optimality conditions in an optimization problem with interval-valued objective function..Europ, J. Oper. Res. 176 (2007), 46-59. MR 2265133,
Reference: [27] Wu, H. C.: Wolfe duality for interval-valued optimization..J. Optim. Theory Appl. 138 (2008), 497-509. MR 2429694,
Reference: [28] Zangwill, W. I.: Non-linear programming via penalty functions..Management Sci. 13 (1967), 344-358. MR 0252040,
Reference: [29] Zhang, J.: Optimality condition and Wolfe duality for invex interval-valued nonlinear programming problems..J. Appl. Math. Article ID 641345 (2013). MR 3142560,
Reference: [30] Zhou, H. C., Wang, Y. J.: Optimality condition and mixed duality for interval-valued optimization..Fuzzy Inform. Engrg.2 (2009), 1315-1323. MR 2429694,
.

Files

Files Size Format View
Kybernetika_60-2024-5_5.pdf 493.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo