Previous |  Up |  Next

Article

Keywords:
uni-nullnorm; nullnorm; closure operator; construction; bounded lattice; ordinal like sum construction
Summary:
The primary aim of this article is to put forward new classes of uni-nullnorms on certain classes of bounded lattices via closure (interior) operators. Due to the new classes of uninorms combining both a t-norm $T$ and a t-conorm $S$ by various kinds of closure operators or interior operators, the relationships and properties among the same class of uninorms on $L$, we obtain new classes of uni-nullnorms on $L$ via closure (interior) operators. The constructions of uni-nullnorms on some certain classes of bounded lattices can provide another different perspective of t-norms and the dual of t-norms, uninorms and some other associative aggregation operations on bounded lattices. That is, the constructions seem to be the ordinal like sum constructions, but not limited to the ordinal like sum constructions.
References:
[1] Aşıcı, E.: An order induced by nullnorms and its properties. Fuzzy Sets Syst. 325 (2017), 35-46. DOI  | MR 3690353
[2] Abramsky, S.: Domain Theory and The Logic of Observable Properties. PhD. Thesis, Queen Mary College, University of London, 1987.
[3] Birkhoff, G.: Lattice Theory. American Mathematical Society Colloquium Publications, Rhode Island, 1973. MR 0029876 | Zbl 0537.06001
[4] Bodjanova, S., Kalina, M.: Construction of uninorms on bounded lattices. In: IEEE 12th International Symposium on Intelligent Systems and Informatics, SISY 2014, Subotica 2014. DOI 
[5] Bustince, H., Fernández, J., Mesiar, R., Montero, J., Orduna, R.: Overlap functions. Nonlinear Anal. 72 (2010), 1488-1499. DOI  | MR 2577550
[6] Calvo, T., Baets, B. De, Fodor, J. C.: The functional equations of Frank and Alsina for uninorms and nullnorms. Fuzzy Sets Syst. 120 (2001), 385-394. DOI  | MR 1829256 | Zbl 0977.03026
[7] Çaylı, G. D., Karaçal, F., Mesiar, R.: On a new class of uninorms on bounded lattices. Inf. Sci. 367-368 (2016), 221-231. DOI  | MR 3684677
[8] Çaylı, G. D.: A characterization of uninorms on bounded lattices by means of triangular norms and triangular conorm. Int. J. Gen. Syst. 47 (2018), 8, 772-793. DOI  | MR 3867053
[9] Çaylı, G. D.: Alternative approaches for generating uninorms on bounded lattices. Inf. Sci. 488 (2019), 111-139. DOI  | MR 3924420
[10] Çaylı, G. D.: On the structure of uninorms on bounded lattices. Fuzzy Sets Syst. 357 (2019), 2-26. DOI  | MR 3913056
[11] Çaylı, G. D.: Some results about nullnorms on bounded lattices. Fuzzy Sets Syst. 386 (2020), 105-131. DOI  | MR 4073390
[12] Çaylı, G.D.: Nullnorms on bounded lattices derived from t-norms and t-conorms. Inf. Sci. 512 (2020), 1134-1154. DOI  | MR 4038616
[13] Çaylı, G. D.: Generating nullnorms on some special classes of bounded lattices via closure and interior operators. Inf. Sci. 552 (2021), 118-141. DOI  | MR 4192809
[14] Çaylı, G. D.: New construction approaches of uninorms on bounded lattices. Int. J. Gen. Syst. 50 (2021), 2, 139-158. DOI 10.1080/03081079.2020.1863397 | MR 4222196
[15] Dan, Y. X., Hu, B. Q., Qiao, J. S.: New constructions of uninorms on bounded lattices. Int. J. Approx. Reason. 110 (2019), 185-209. DOI  | MR 3947797
[16] Drossos, C. A.: Generalized t-norm structures. Fuzzy Sets Syst. 104 (1999), 53-59. DOI  | MR 1685809
[17] Baets, B. De, Mesiar, R.: Triangular norms on product lattices. Fuzzy Sets Syst. 104 (1999), 61-75. DOI  | MR 1685810 | Zbl 0935.03060
[18] Baets, B. De: Idempotent uninorms. Eur. J. Oper. Res. 118 (1999), 631-642. DOI  | Zbl 1178.03070
[19] Drygaś, P., Ruiz-Aguilera, D., Torrens, J.: A characterization of uninorms locally internal in A(e) with continuous underlying operators. Fuzzy Sets Syst. 287 (2016), 137-153. DOI  | MR 3447023
[20] Dubois, D., Prade, H.: A review of fuzzy set aggregation connectives. Inf. Sci. 36 (1985), 85-121. DOI  | MR 0813766 | Zbl 0582.03040
[21] Dvořák, A., Holčapek, M.: New construction of an ordinal sum of t-norms and t-conorms on bounded lattices. Inf. Sci. 515 (2020), 116-131. DOI  | MR 4042588
[22] Dvořák, A., Holčapek, M., Paseka, J.: On ordinal sums of partially ordered monoids: A unified approach to ordinal sum constructions of t-norms, t-conorms and uninorms. Fuzzy Sets Syst. 446 (2022), 4-25. DOI  | MR 4473738
[23] Ertu\v{g}rul, Ü., Kesicio\v{g}lu, M. N., Karaçal, F.: Construction methods for uni-nullnorms and null-uninorms on bounded lattices. Kybernetika 55 (2019), 6, 994-1015. DOI  | MR 4077141
[24] Ertugrul, Ü., Yeşilyurt, M.: Ordinal sums of triangular norms on bounded lattices. Inf. Sci. 517 (2020), 198-216. DOI  | MR 4050654
[25] Ertugrul, Ü.: Construction of nullnorms on bounded lattices and an equivalence relation on nullnorms. Fuzzy Sets Syst. 334 (2018), 94-109. DOI  | MR 3742235
[26] Esteva, F., Godo, L.: Monoidal t-norm based logic: towards a logic for left-continuous t-norms. Fuzzy Sets Syst. 124 (2001), 271-288. DOI  | MR 1860848
[27] Everett, C. J.: Closure operators and Galois theory in lattices. Trans. Amer. Math. Soc. 55 (1944), 514-525. DOI  | MR 0010556
[28] Fodor, J. C., Yager, R. R., Rybalov, A.: Structure of uninorms. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 5 (1997), 411-427. DOI  | MR 1471619 | Zbl 1232.03015
[29] Fodor, J. C., Baets, B. De: A single-point characterization of representable uninorms. Fuzzy Sets Syst. 202 (2012), 89-99. DOI  | MR 2934788 | Zbl 1268.03027
[30] Gierz, G., Hofmann, K. H., Keimel, K., Lawson, J. D., Mislove, M., Scott, D. S.: Continuous Lattices and Domains. Cambridge University Press, 2003. MR 4099041
[31] Grabisch, M., Marichal, J., Mesiar, R., Pap, E.: Aggregation Functions. Cambridge University Press, 2009. MR 2538324 | Zbl 1206.68299
[32] Han, S. W., Zhao, B.: The Basis of Quantale Theory (in Chinese). Science Press, Beijing 2016. MR 1056649
[33] Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer, Dordrecht 1998. MR 1900263 | Zbl 1007.03022
[34] Ji, W.: Constructions of uninorms on bounded lattices by means of t-subnorms and t-subconorms. Fuzzy Sets Syst. 403 (2021), 38-55. DOI  | MR 4174507
[35] Karaçal, F., D.Khadjiev: $\bigvee$-distributive and infinitely $\bigvee$-distributive t-norms on complete lattice. Fuzzy Sets Syst. 151 (2005), 341-352. DOI  | MR 2124884
[36] Karaçal, F., Mesiar, R.: Uninorms on bounded lattices. Fuzzy Sets Syst. 261 (2015), 33-43. DOI  | MR 3291484
[37] Karaçal, F., Ince, M. A., Mesiar, R.: Nullnorms on bounded lattices. Inf. Sci. 325 (2015), 227-236. DOI  | MR 3392300
[38] Klement, E. P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer, Dordrecht 2000. MR 1790096 | Zbl 1087.20041
[39] Liu, H. W.: Semi-uninorms and implications on a complete lattice. Fuzzy Sets Syst. 191 (2012), 72-82. DOI  | MR 2874824
[40] Mas, M., Mayor, G., Torrens, J.: The modularity condition for uninorms and t-operators. Fuzzy Sets Syst. 126 (2002), 207-218. DOI  | MR 1884687
[41] Mas, M., Mayor, G., Torrens, J.: T-operators. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 7 (1999), 1, 31-50. MR 1691482
[42] Mas, M., Mayor, G., Torrens, J.: T-operators and uninorms on a finite totally ordered set (special issue). Math. Fuzzy Sets, Int. J. Intell. Syst. 14 (1999), 909-922. DOI 
[43] Ouyang, Y., Zhang, H. P.: Constructing uninorms via closure operators on a bounded lattice. Fuzzy Sets Syst. 395 (2020), 93-106. DOI  | MR 4109063
[44] Ouyang, Y., Zhang, H. P., Wang, Z., Baets, B. De: On triangular norms representable as ordinal sums based on interior operators on a bounded meet semilattice. Fuzzy Sets Syst. 439 (2022), 89-101. DOI  | MR 4418949
[45] Qin, F., Zhao, B.: The distributive equations for idempotent uninorms and nullnorms. Fuzzy Sets Syst. 155 (2005), 446-458. DOI  | MR 2181001 | Zbl 1077.03514
[46] Qin, F.: Uninorm solutions and (or) nullnorm solutions to the modularity condition equations. Fuzzy Sets Syst. 148 (2004), 231-242. DOI  | MR 2100197
[47] Rosenthal, K. I.: Quantales and Their Applications. Longman Scientific and Technical, New York 1990. MR 1088258
[48] Su, Y., Zong, W. W., Drygaś, P.: Properties of uninorms with the underlying operations given as ordinal sums. Fuzzy Sets Syst. 357 (2019), 47-57. DOI  | MR 3913058
[49] Sun, F., Wang, X. P., Qu, X. B.: Uni-nullnorms and null-uninorms. J. Intell. Fuzzy Syst. 32 (2017), 1969-1981. DOI 
[50] Sun, X. R., Liu, H. W.: Representation of nullnorms on bounded lattices. Inf. Sci. 539 (2020), 269-276. DOI  | MR 4117402
[51] Stone, M. H.: The theory of representations of Boolean algebras. Trans. Amer. Math. Soc. 40 (1936), 37-111. DOI  | MR 1501865
[52] Vickers, S.: Topology via Logic. Cambridge University Press, Cambridge, 1989. MR 1002193
[53] Wang, G. J.: Non-classical Mathematical Logic and Approximate Reasoning (in Chinese). Science Press, Beijing 2000 .
[54] Wang, Y. M., Zhan, H., Liu, H. W.: Uni-nullnorms on bounded lattices. Fuzzy Sets Syst. 386 (2020), 132-144. DOI  | MR 4073382
[55] Ward, M., Dilworth, P. R.: Residuated lattice. Trans. Amer. Math. Soc. 45 (1939), 335-354. DOI  | MR 1501995
[56] Wu, T., Wu, H. B.: Embedding of Quantale system (in Chinese). J. Jilin Univ. Sci. Edit. 55 (2017), 5, 1084-1088. MR 3752301
[57] Wu, T., Wu, H. B.: The properties of Quantale system and its subsystem (in Chinese). Fuzzy Syst. Math. 32 (2018), 2, 121-127. DOI 
[58] Wu, T., Zhao, B.: The properties of $\models$-filters of a topological system. Soft Comput. 23 (2019), 24, 12951-12960. DOI 
[59] Wu, T., Zhao, B.: Distributivity of implication operations over overlap and grouping functions in interval-valued fuzzy set theory (in Chinese). J. Jilin Univ. Sci. Edit. 57 (2019), 5, 1014-1022. MR 3970520
[60] Wu, T., Zhao, B.: Solutions to distributive equations of overlap and grouping functions (in Chinese). J. Jilin Univ. Sci. Edit. 58 (2020), 1, 54-64. MR 4129226
[61] Yager, R. R., Rybalov, A.: Uninorm aggregation operators. Fuzzy Sets Syst. 80 (1996), 111-120. DOI  | MR 1389951 | Zbl 0871.04007
[62] Zhang, D. X.: Triangular norms on partially ordered sets. Fuzzy Sets Syst. 153 (2005), 195-209. DOI  | MR 2150280
[63] Zhang, H. P., Ouyang, Y., baets, B. De: Constructions of uni-nullnorms and null-uninorms on a bounded lattice. Fuzzy Sets Syst. 403 (2021), 78-87. DOI  | MR 4174509
[64] Zhang, H. P., Ouyang, Y., Wang, Z. D., Baets, B. De: A complete representation theorem for nullnorms on bounded lattices with ample illustrations. Fuzzy Sets Syst. 439 (2022), 157-169. DOI  | MR 4418953
[65] Zhao, B., Wu, T.: Some further results about uninorms on bounded lattices. Int. J. Approx. Reason. 130 (2021), 22-49. DOI  | MR 4188974
[66] Zheng, C. Y., Fan, L., Cui, H. B.: Introduction to Frames and Continuous Lattices. Capital Normal University Press, Beijing 2000.
[67] Zhou, H. J., Zhao, B.: Stone-like representation theorems and three-valued filters in $R_{0}$-algebras (nilpotent minimum algebras). Fuzzy Sets Syst. 162 (2011), 1-26. DOI  | MR 2734882
Partner of
EuDML logo