[7] Castillo J. M. F., Sanchez F.:
Dunford–Pettis like properties of continuous vector function spaces. Rev. Mat. Univ. Complut. Madrid 6 (1993), no. 1, 43–59.
MR 1245024
[8] Cembranos P.:
$C(K,E)$ contains a complemented copy of $c_0$. Proc. Amer. Math. Soc. 91 (1984), no. 4, 556–558.
MR 0746089
[9] Cilia R., Emmanuele G.:
Some isomorphic properties in $K(X, Y)$ and in projective tensor products. Colloq. Math. 146 (2017), no. 2, 239–252.
DOI 10.4064/cm6184-12-2015 |
MR 3622375
[10] Dehghani M., Dehghani M. B., Moshtaghioun M. S.:
Sequentially right Banach spaces of order $p$. Comment. Math. Univ. Carolin. 61 (2020), no. 1, 51–67.
MR 4093429
[11] Diestel J.:
A survey of results related to the Dunford–Pettis property. Proc. of Conf. on Integration, Topology, and Geometry in Linear Spaces, Univ. North Carolina, Chapel Hill, N.C., 1979, Contemp. Math., 2, Amer. Math. Soc., Providence, 1980, pages 15–60.
MR 0621850
[12] Diestel J., Jarchow H., Tonge A.:
Absolutely Summing Operators. Cambridge Studies in Advanced Mathematics, 43, Cambridge University Press, Cambridge, 1995.
MR 1342297 |
Zbl 1139.47021
[13] Drewnowski L., Emmanuele G.:
On Banach spaces with the Gel'fand–Phillips property. II. Rend. Circ. Mat. Palermo (2) 38 (1989), no. 3, 377–391.
DOI 10.1007/BF02850021 |
MR 1053378
[14] Emmanuele G.:
Banach spaces in which Dunford–Pettis sets are relatively compact. Arch. Math. (Basel) 58 (1992), no. 5, 477–485.
DOI 10.1007/BF01190118 |
MR 1156580
[17] Ghenciu I.:
Weak precompactness and property $(V^*)$ in spaces of compact operators. Colloq. Math. 138 (2015), no. 2, 255–269.
DOI 10.4064/cm138-2-10 |
MR 3312111
[19] Ghenciu I.:
A note on some isomorphic properties in projective tensor products. Extracta Math. 32 (2017), no. 1, 1–24.
MR 3726522
[26] Kačena M.:
On sequentially right Banach spaces. Extracta Math. 26 (2011), no. 1, 1–27.
MR 2908388
[28] Li L., Chen D., Chavez-Dominguez J. A.:
Pełczyński's property $(V^*)$ of order $p$ and its quantification. Math. Nachr. 291 (2018), no. 2–3, 420–442.
DOI 10.1002/mana.201600335 |
MR 3767145
[29] Pełczyński A.:
Banach spaces on which every unconditionally converging operator is weakly compact. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 10 (1962), 641–648.
MR 0149295 |
Zbl 0107.32504
[30] Peralta A. M., Villanueva I., Wright J. D. M., Ylinen K.:
Topological characterization of weakly compact operators. J. Math. Anal. Appl. 325 (2007), no. 2, 968–974.
DOI 10.1016/j.jmaa.2006.02.066 |
MR 2270063
[31] Rosenthal H. P.:
Point-wise compact subsets of the first Baire class. Amer. J. Math. 99 (1977), no. 2, 362–378.
DOI 10.2307/2373824 |
MR 0438113
[32] Salimi M., Moshtaghiun S. M.:
A new class of Banach spaces and its relation with some geometric properties of Banach spaces. Abstr. Appl. Anal. (2012), Art. ID 212957, 8 pages.
MR 2910729
[33] Wojtaszczyk P.:
Banach Spaces for Analysts. Cambridge Studies in Advanced Mathematics, 25, Cambridge University Press, Cambridge, 1991.
MR 1144277