Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
almost demi Dunford--Pettis operator; Banach lattice; positive Schur property
Summary:
We introduce new concept of almost demi Dunford--Pettis operators. Let $E$ be a Banach lattice. An operator $T$ from $E$ into $E$ is said to be almost demi Dunford--Pettis if, for every sequence $\{x_{n}\}$ in $E_{+}$ such that $x_{n}\rightarrow 0$ in $\sigma(E,E')$ and $\|x_{n}-Tx_{n}\|\rightarrow 0$ as $n\rightarrow \infty$, we have $\|x_{n}\|\rightarrow 0$ as $n\rightarrow \infty$. In addition, we study some properties of this class of operators and its relationships with others known operators.
References:
[1] Abramovich Y. A., Aliprantis C. D.: An Invitation to Operator Theory. Graduate Studies in Mathematics, 50, American Mathematical Society, Providence, 2002. DOI 10.1090/gsm/051/02 | MR 1921782 | Zbl 1022.47001
[2] Aliprantis C. D., Burkinshaw O.: Positive Operators. Pure and Applied Mathematics, 119, Academic Press, Orlando, 1985. MR 0809372 | Zbl 1098.47001
[3] Aqzzouz B., Elbour A.: Some characterizations of almost Dunford–Pettis operators and applications. Positivity 15 (2011), no. 3, 369–380. DOI 10.1007/s11117-010-0083-7 | MR 2832593
[4] Aqzzouz B., Elbour A., Wickstead A. W.: Positive almost Dunford–Pettis operators and their duality. Positivity 15 (2011), no. 2, 185–197. DOI 10.1007/s11117-010-0050-3 | MR 2803812
[5] Benkhaled H., Elleuch A., Jeribi A.: The class of order weakly demicompact operators. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 114 (2) (2020), no. 2, Paper No. 76, 8 pages. MR 4056881
[6] Benkhaled H., Hajji M., Jeribi A.: L-weakly and M-weakly demicompact operators on Banach lattices. Filomat 36 (2022), no. 13, 4319–4329. DOI 10.2298/FIL2213319B | MR 4554326
[7] Benkhaled H., Hajji M., Jeribi A.: On the class of demi Dunford–Pettis operators. Rend. Circ. Mat. Palermo Ser. (2) 72 (2022), no. 2, 901–911. MR 4559078
[8] Benkhaled H., Jeribi A.: On $B$-weakly demicompact operators on Banach lattices. Vladikavkaz. Mat. Zh. 25 (2023), no. 4, 20–28. MR 4680962
[9] Guerre-Delabrière S.: Classical Sequences in Banach Spaces. Monographs and Textbooks in Pure and Applied Mathematics, 166, Marcel Dekker, New York, 1992. MR 1197117
[10] Meyer-Nieberg P.: Banach Lattices. Universitext, Springer, Berlin, 1991. MR 1128093 | Zbl 0743.46015
[11] Petryshyn W. V.: Construction of fixed points of demicompact mappings in Hilbert space. J. Math. Anal. Appl. 14 (1966), 276–284. DOI 10.1016/0022-247X(66)90027-8 | MR 0194942
[12] Wnuk W.: Banach lattice with weak Dunford–Pettis property. Atti Sem. Mat. Fis. Univ. Modena 42 (1994), no. 1, 227–236. MR 1282338
Partner of
EuDML logo