Title: | $L$-limited-like properties on Banach spaces (English) |
Author: | Ghenciu, Ioana |
Language: | English |
Journal: | Commentationes Mathematicae Universitatis Carolinae |
ISSN: | 0010-2628 (print) |
ISSN: | 1213-7243 (online) |
Volume: | 64 |
Issue: | 4 |
Year: | 2023 |
Pages: | 439-457 |
Summary lang: | English |
. | |
Category: | math |
. | |
Summary: | We study weakly precompact sets and operators. We show that an operator is weakly precompact if and only if its adjoint is pseudo weakly compact. We study Banach spaces with the $p$-$L$-limited$^*$ and the $p$-(SR$^*$) properties and characterize these classes of Banach spaces in terms of $p$-$L$-limited$^*$ and $p$-Right$^*$ subsets. The $p$-$L$-limited$^*$ property is studied in some spaces of operators. (English) |
Keyword: | $p$-Right$^*$ set |
Keyword: | Right$^*$ set |
Keyword: | DP $p$-convergent operator |
Keyword: | weakly precompact operator |
Keyword: | limited $p$-convergent operator |
MSC: | 46B20 |
MSC: | 46B25 |
MSC: | 46B28 |
DOI: | 10.14712/1213-7243.2024.013 |
. | |
Date available: | 2024-11-05T11:47:43Z |
Last updated: | 2024-11-05 |
Stable URL: | http://hdl.handle.net/10338.dmlcz/152625 |
. | |
Reference: | [1] Alikhani M.: Sequentially right-like properties on Banach spaces.Filomat 33 (2019), no. 14, 4461–4474. MR 4049162, 10.2298/FIL1914461A |
Reference: | [2] Andrews K. T.: Dunford–Pettis sets in the space of Bochner integrable functions.Math. Ann. 241 (1979), no. 1, 35–41. MR 0531148, 10.1007/BF01406706 |
Reference: | [3] Bator E., Lewis P., Ochoa J.: Evaluation maps, restriction maps, and compactness.Colloq. Math. 78 (1998), no. 1, 1–17. Zbl 0948.46008, MR 1658115, 10.4064/cm-78-1-1-17 |
Reference: | [4] Bourgain J., Delbaen F.: A class of special $\mathcal{L}_\infty$ spaces.Acta Math. 145 (1980), no. 3–4, 155–176. MR 0590288, 10.1007/BF02414188 |
Reference: | [5] Bourgain J., Diestel J.: Limited operators and strict cosingularity.Math. Nachr. 119 (1984), 55–58. Zbl 0601.47019, MR 0774176, 10.1002/mana.19841190105 |
Reference: | [6] Carrión H., Galindo P., Lourenço M.: A stronger Dunford–Pettis property.Studia Math. 184 (2008), no. 3, 205–216. MR 2369139, 10.4064/sm184-3-1 |
Reference: | [7] Castillo J. M. F., Sanchez F.: Dunford–Pettis like properties of continuous vector function spaces.Rev. Mat. Univ. Complut. Madrid 6 (1993), no. 1, 43–59. MR 1245024 |
Reference: | [8] Cembranos P.: $C(K,E)$ contains a complemented copy of $c_0$.Proc. Amer. Math. Soc. 91 (1984), no. 4, 556–558. MR 0746089 |
Reference: | [9] Cilia R., Emmanuele G.: Some isomorphic properties in $K(X, Y)$ and in projective tensor products.Colloq. Math. 146 (2017), no. 2, 239–252. MR 3622375, 10.4064/cm6184-12-2015 |
Reference: | [10] Dehghani M., Dehghani M. B., Moshtaghioun M. S.: Sequentially right Banach spaces of order $p$.Comment. Math. Univ. Carolin. 61 (2020), no. 1, 51–67. MR 4093429 |
Reference: | [11] Diestel J.: A survey of results related to the Dunford–Pettis property.Proc. of Conf. on Integration, Topology, and Geometry in Linear Spaces, Univ. North Carolina, Chapel Hill, N.C., 1979, Contemp. Math., 2, Amer. Math. Soc., Providence, 1980, pages 15–60. MR 0621850 |
Reference: | [12] Diestel J., Jarchow H., Tonge A.: Absolutely Summing Operators.Cambridge Studies in Advanced Mathematics, 43, Cambridge University Press, Cambridge, 1995. Zbl 1139.47021, MR 1342297 |
Reference: | [13] Drewnowski L., Emmanuele G.: On Banach spaces with the Gel'fand–Phillips property. II.Rend. Circ. Mat. Palermo (2) 38 (1989), no. 3, 377–391. MR 1053378, 10.1007/BF02850021 |
Reference: | [14] Emmanuele G.: Banach spaces in which Dunford–Pettis sets are relatively compact.Arch. Math. (Basel) 58 (1992), no. 5, 477–485. MR 1156580, 10.1007/BF01190118 |
Reference: | [15] Fourie J. H., Zeekoei E. D.: $DP^*$-Properties of order $p$ on Banach spaces.Quaest. Math. 37 (2014), no. 3, 349–358. MR 3285289, 10.2989/16073606.2013.779611 |
Reference: | [16] Fourie J. H., Zeekoei E. D.: On weak-star $p$-convergent operators.Quaest. Math. 40 (2017), no. 5, 563–579. MR 3691468, 10.2989/16073606.2017.1301591 |
Reference: | [17] Ghenciu I.: Weak precompactness and property $(V^*)$ in spaces of compact operators.Colloq. Math. 138 (2015), no. 2, 255–269. MR 3312111, 10.4064/cm138-2-10 |
Reference: | [18] Ghenciu I.: $L$-sets and property $(SR^*)$ in spaces of compact operators.Monatsh. Math. 181 (2016), no. 3, 609–628. MR 3552802, 10.1007/s00605-016-0884-2 |
Reference: | [19] Ghenciu I.: A note on some isomorphic properties in projective tensor products.Extracta Math. 32 (2017), no. 1, 1–24. MR 3726522 |
Reference: | [20] Ghenciu I.: The $p$-Gelfand–Phillips property in spaces of operators and Dunford–Pettis like sets.Acta Math. Hungar. 155 (2018), no. 2, 439–457. MR 3831309, 10.1007/s10474-018-0836-5 |
Reference: | [21] Ghenciu I.: Some classes of Banach spaces and complemented subspaces of operators.Adv. Oper. Theory 4 (2019), no. 2, 369–387. MR 3883141, 10.15352/aot.1802-1318 |
Reference: | [22] Ghenciu I.: A note on $p$-limited sets in dual Banach spaces.Monatsh. Math. 200 (2023), no. 2, 255–270. MR 4544297, 10.1007/s00605-022-01738-6 |
Reference: | [23] Ghenciu I., Lewis P.: Almost weakly compact operators.Bull. Pol. Acad. Sci. Math. 54 (2006), no. 3–4, 237–256. Zbl 1118.46016, MR 2287199, 10.4064/ba54-3-6 |
Reference: | [24] Ghenciu I., Lewis P.: Completely continuous operators.Colloq. Math. 126 (2012), no. 2, 231–256. Zbl 1256.46009, MR 2924252, 10.4064/cm126-2-7 |
Reference: | [25] Ghenciu I., Popescu R.: A note on some classes of operators on C(K,X).Quaest. Math. 47 (2024), no. 1, 21–42. MR 4713267, 10.2989/16073606.2023.2182243 |
Reference: | [26] Kačena M.: On sequentially right Banach spaces.Extracta Math. 26 (2011), no. 1, 1–27. MR 2908388 |
Reference: | [27] Karn A. K., Sinha D. P.: An operator summability of sequences in Banach spaces.Glasg. Math. J. 56 (2014), no. 2, 427–437. MR 3187909, 10.1017/S0017089513000360 |
Reference: | [28] Li L., Chen D., Chavez-Dominguez J. A.: Pełczyński's property $(V^*)$ of order $p$ and its quantification.Math. Nachr. 291 (2018), no. 2–3, 420–442. MR 3767145, 10.1002/mana.201600335 |
Reference: | [29] Pełczyński A.: Banach spaces on which every unconditionally converging operator is weakly compact.Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 10 (1962), 641–648. Zbl 0107.32504, MR 0149295 |
Reference: | [30] Peralta A. M., Villanueva I., Wright J. D. M., Ylinen K.: Topological characterization of weakly compact operators.J. Math. Anal. Appl. 325 (2007), no. 2, 968–974. MR 2270063, 10.1016/j.jmaa.2006.02.066 |
Reference: | [31] Rosenthal H. P.: Point-wise compact subsets of the first Baire class.Amer. J. Math. 99 (1977), no. 2, 362–378. MR 0438113, 10.2307/2373824 |
Reference: | [32] Salimi M., Moshtaghiun S. M.: A new class of Banach spaces and its relation with some geometric properties of Banach spaces.Abstr. Appl. Anal. (2012), Art. ID 212957, 8 pages. MR 2910729 |
Reference: | [33] Wojtaszczyk P.: Banach Spaces for Analysts.Cambridge Studies in Advanced Mathematics, 25, Cambridge University Press, Cambridge, 1991. MR 1144277 |
. |
Fulltext not available (moving wall 24 months)