Previous |  Up |  Next

Article

Title: Left EM rings (English)
Author: Baeck, Jongwook
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 74
Issue: 3
Year: 2024
Pages: 839-867
Summary lang: English
.
Category: math
.
Summary: Let $R[x]$ be the polynomial ring over a ring $R$ with unity. A polynomial $f(x)\in R[x]$ is referred to as a left annihilating content polynomial (left ACP) if there exist an element $r \in R$ and a polynomial $g(x) \in R[x]$ such that $f(x)=rg(x)$ and $g(x)$ is not a right zero-divisor polynomial in $R[x]$. A ring $R$ is referred to as left EM if each polynomial $f(x) \in R[x]$ is a left ACP. We observe the structure of left EM rings with various properties, and study the relationships between the one-sided EM condition and other standard ring theoretic conditions. Moreover, several extensions of EM rings are investigated, including polynomial rings, matrix rings, and Ore localizations. (English)
Keyword: EM ring
Keyword: annihilating content polynomial
Keyword: polynomial ring
Keyword: uniserial ring
Keyword: generalized morphic ring
Keyword: zero-divisor
MSC: 16E50
MSC: 16P40
MSC: 16U80
MSC: 16W99
idZBL: Zbl 07953681
idMR: MR4804963
DOI: 10.21136/CMJ.2024.0071-24
.
Date available: 2024-10-03T12:38:14Z
Last updated: 2024-12-13
Stable URL: http://hdl.handle.net/10338.dmlcz/152584
.
Reference: [1] Abuosba, E., Al-Azaizeh, M., Ghanem, M.: Prüfer conditions vs EM conditions.Commun. Korean Math. Soc. 38 (2023), 69-77. Zbl 1519.13001, MR 4542621, 10.4134/CKMS.c210439
Reference: [2] Abuosba, E., Ghanem, M.: Annihilating content in polynomial and power series rings.J. Korean Math. Soc. 56 (2019), 1403-1418. Zbl 1427.13024, MR 3997475, 10.4134/JKMS.j180698
Reference: [3] Agayev, N., Güngöroğlu, G., Harmanci, A., Halicioğlu, S.: Abelian modules.Acta Math. Univ. Comen., New Ser. 78 (2009), 235-244. Zbl 1190.16047, MR 2684191
Reference: [4] Anderson, D. D., Abuosba, E., Ghanem, M.: Annihilating content polynomials and EM- rings.J. Algebra Appl. 21 (2022), Article ID 2250092, 18 pages. Zbl 1490.13002, MR 4406639, 10.1142/S021949882250092X
Reference: [5] Anderson, D. D., Anderson, D. F., Markanda, R.: The rings $R(X)$ and $R\langle X \rangle$.J. Algebra 95 (1985), 96-115. Zbl 0621.13008, MR 0797658, 10.1016/0021-8693(85)90096-1
Reference: [6] Anderson, D. D., Camillo, V.: Armendariz rings and Gaussian rings.Commun. Algebra 26 (1998), 2265-2272. Zbl 0915.13001, MR 1626606, 10.1080/00927879808826274
Reference: [7] Anderson, D. D., Dumitrescu, T.: $S$-Noetherian rings.Commun. Algebra 30 (2002), 4407-4416. Zbl 1060.13007, MR 1936480, 10.1081/AGB-120013328
Reference: [8] Baeck, J.: The rings where zero-divisor polynomials have zero-divisor coefficients.Rocky Mt. J. Math. 51 (2021), 771-785. Zbl 1477.16040, MR 4298828, 10.1216/rmj.2021.51.771
Reference: [9] Baeck, J.: On modules related to McCoy modules.Open Math. 20 (2022), 1734-1752. Zbl 1508.16008, MR 4529433, 10.1515/math-2022-0545
Reference: [10] Baeck, J.: On $S$-principal right ideal rings.AIMS Math. 7 (2022), 12106-12122. MR 4431772, 10.3934/math.2022673
Reference: [11] Baeck, J.: $S$-injective modules.Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 118 (2024), Article ID 20, 20 pages. Zbl 07796711, MR 4662890, 10.1007/s13398-023-01514-7
Reference: [12] Baeck, J., Kim, N. K., Kwak, T. K., Lee, Y.: Structure of annihilators of powers.Turk. J. Math. 46 (2022), 1945-1964. Zbl 1515.16034, MR 4453897, 10.55730/1300-0098.3243
Reference: [13] Baeck, J., Kim, N. K., Lee, Y., Nielsen, P. P.: Zero-divisor placement, a condition of Camillo, and the McCoy property.J. Pure Appl. Algebra 224 (2020), Article ID 106432, 13 pages. Zbl 1465.16037, MR 4099920, 10.1016/j.jpaa.2020.106432
Reference: [14] Baeck, J., Lee, G., Lim, J. W.: $S$-Noetherian rings and their extensions.Taiwanese J. Math. 20 (2016), 1231-1250. Zbl 1357.16039, MR 3580293, 10.11650/tjm.20.2016.7436
Reference: [15] Bergman, G. M.: The diamond lemma for ring theory.Adv. Math. 29 (1978), 178-218. Zbl 0326.16019, MR 0506890, 10.1016/0001-8708(78)90010-5
Reference: [16] Bilgin, Z., Reyes, M. L., Tekir, Ü.: On right $S$-Noetherian rings and $S$-Noetherian modules.Commun. Algebra 46 (2018), 863-869. Zbl 1410.16026, MR 3764903, 10.1080/00927872.2017.1332199
Reference: [17] Camillo, V., Nielsen, P. P.: McCoy rings and zero-divisors.J. Pure Appl. Algebra 212 (2008), 599-615. Zbl 1162.16021, MR 2365335, 10.1016/j.jpaa.2007.06.010
Reference: [18] Cannon, G. A., Neuerburg, K. M.: Ideals in Dorroh extensions of rings.Missouri J. Math. Sci. 20 (2008), 165-168. Zbl 1174.16001, 10.35834/mjms/1316032775
Reference: [19] Cui, J., Chen, J.: On McCoy modules.Bull. Korean Math. Soc. 48 (2011), 23-33. Zbl 1221.16028, MR 2778493, 10.4134/BKMS.2011.48.1.023
Reference: [20] Endo, S.: Note on PP rings (A supplement to Hattori's paper).Nagoya Math. J. 17 (1960), 167-170. Zbl 0117.02203, MR 0137746, 10.1017/S0027763000002129
Reference: [21] K. R. Goodearl, R. B. Warfield, Jr.: An Introduction to Noncommutative Noetherian Rings.London Mathematical Society Student Texts 61. Cambridge University Press, Cambridge (2004). Zbl 1101.16001, MR 2080008, 10.1017/CBO9780511841699
Reference: [22] Hashemi, E., Estaji, A. AS., Ziembowski, M.: Answers to some questions concerning rings with property (A).Proc. Edinb. Math. Soc., II. Ser. 60 (2017), 651-664. Zbl 1405.16036, MR 3674083, 10.1017/S0013091516000407
Reference: [23] Hong, C. Y., Jeon, Y. C., Kim, N. K., Lee, Y.: The McCoy condition on noncommutative rings.Commun. Algebra 39 (2011), 1809-1825. Zbl 1231.16032, MR 2821508, 10.1080/00927872.2010.480952
Reference: [24] Hong, C. Y., Kim, N. K., Lee, Y., Nielsen, P. P.: The minimal prime spectrum of rings with annihilator conditions.J. Pure Appl. Algebra 213 (2009), 1478-1488. Zbl 1218.16001, MR 2497591, 10.1016/j.jpaa.2009.01.005
Reference: [25] Hong, C. Y., Kim, N. K., Lee, Y., Ryu, S. J.: Rings with property (A) and their extensions.J. Algebra 315 (2007), 612-628. Zbl 1156.16001, MR 2351882, 10.1016/j.jalgebra.2007.01.042
Reference: [26] Huckaba, J. A., Keller, J. M.: Annihilation of ideals in commutative rings.Pac. J. Math. 83 (1979), 375-379. Zbl 0388.13001, MR 0557938, 10.2140/pjm.1979.83.375
Reference: [27] Jordan, D. A.: A left Noetherian, right Ore domain which is not right Noetherian.Bull. Lond. Math. Soc. 12 (1980), 202-204. Zbl 0433.16001, MR 0572101, 10.1112/blms/12.3.202
Reference: [28] Kaplansky, I.: Commutative Rings.University of Chicago Press, Chicago (1974). Zbl 0296.13001, MR 0345945
Reference: [29] Kim, N. K., Lee, Y.: Armendariz rings and reduced rings.J. Algebra 223 (2000), 477-488. Zbl 0957.16018, MR 1735157, 10.1006/jabr.1999.8017
Reference: [30] Lam, T. Y.: A First Course in Noncommutative Rings.Graduate Texts in Mathematics 131. Springer, New York (1991). Zbl 0728.16001, MR 1125071, 10.1007/978-1-4419-8616-0
Reference: [31] Lam, T. Y.: Lectures on Modules and Rings.Graduate Texts in Mathematics 189. Springer, New York (1999). Zbl 0911.16001, MR 1653294, 10.1007/978-1-4612-0525-8
Reference: [32] Lang, S.: Algebra.Graduate Texts in Mathematics 211. Springer, New York (2002). Zbl 0984.00001, MR 1878556, 10.1007/978-1-4613-0041-0
Reference: [33] Lee, G., Baeck, J., Lim, J. W.: Eakin-Nagata-Eisenbud theorem for right $S$-Noetherian rings.Taiwanese J. Math. 27 (2023), 237-257. Zbl 1529.16018, MR 4563518, 10.11650/tjm/221101
Reference: [34] Lee, T.-K., Zhou, Y.: Armendariz and reduced rings.Commun. Algebra 32 (2004), 2287-2299. Zbl 1068.16037, MR 2100471, 10.1081/AGB-120037221
Reference: [35] Marks, G., Mazurek, R., Ziembowski, M.: A unified approach to various generalizations of Armendariz rings.Bull. Aust. Math. Soc. 81 (2010), 361-397. Zbl 1198.16025, MR 2639852, 10.1017/S0004972709001178
Reference: [36] Mazurek, R., Ziembowski, M.: Right Gaussian rings and skew power series rings.J. Algebra 330 (2011), 130-146. Zbl 1239.16041, MR 2774621, 10.1016/j.jalgebra.2010.11.014
Reference: [37] Nielsen, P. P.: Semi-commutativity and the McCoy condition.J. Algebra 298 (2006), 134-141. Zbl 1110.16036, MR 2215121, 10.1016/j.jalgebra.2005.10.008
Reference: [38] Rege, M. B., Chhawchharia, S.: Armendariz rings.Proc. Japan Acad., Ser. A 73 (1997), 14-17. Zbl 0960.16038, MR 1442245, 10.3792/pjaa.73.14
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo