[5] Silva, J. De, Heysse, K., Kapilow, A., Schenfisch, A., Young, M.:
Turán numbers of vertex-disjoint cliques in $r$-partite graphs. Discrete Math. 341 (2018), 492-496.
DOI 10.1016/j.disc.2017.09.016 |
MR 3724116 |
Zbl 1376.05072
[8] Erdős, P., Simonovits, M.:
A limit theorem in graph theory. Stud. Sci. Math. Hung. 1 (1966), 51-57.
MR 205876 |
Zbl 0178.27301
[13] Hajnal, A., Szemerédi, E.:
Proof of a conjecture of P. Erdős. Combinatorial Theory and Its Applications, I-III Colloquia Mathematica Societatis János Bolyai 4. North-Holland, Amsterdam (1970), 601-623.
MR 297607 |
Zbl 0217.02601
[14] Hou, J., Hu, C., Li, H., Liu, X., Yang, C., Zhang, Y.:
Many vertex-disjoint even cycles of fixed length in a graph. Available at
https://arxiv.org/abs/2311.16189 (2023), 12 pages.
DOI 10.48550/arXiv.2311.16189
[15] Hou, J., Hu, C., Li, H., Liu, X., Yang, C., Zhang, Y.:
Toward a density Corrádi-Hajnal theorem for degenerate hypergraphs. Available at
https://arxiv.org/abs/2311.15172 (2023), 37 pages.
DOI 10.48550/arXiv.2311.15172
[16] Hou, J., Li, H., Liu, X., Yuan, L.-T., Zhang, Y.:
A step towards a general density Corrádi-Hajnal theorem. Available at
https://arxiv.org/abs/2302.09849 (2023), 33 pages.
DOI 10.48550/arXiv.2302.09849
[19] Simonovits, M.:
A method for solving extremal problems in graph theory, stability problems. Theory of Graphs Academic Press, New York (1968), 279-319.
MR 0233735 |
Zbl 0164.24604
[20] Turán, P.:
On an extremal problem in graph theory. Mat. Fiz. Lapok 48 (1941), 436-452 Hungarian.
MR 0018405 |
Zbl 0026.26903