Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
$(n+2)$-angulated category; cluster tilting subcategory; $n$-abelian category; Auslander-Reiten $(n+2)$-angle; Auslander-Reiten $n$-exact sequence
Summary:
Zhou and Zhu have shown that if $\mathscr {C}$ is an $(n+2)$-angulated category and $\mathscr {X}$ is a cluster tilting subcategory of $\mathscr{C}$, then the quotient category $\mathscr {C}/\mathscr {X}$ is an $n$-abelian category. We show that if $\mathscr {C}$ has Auslander-Reiten $(n+2)$-angles, then $\mathscr {C}/\mathscr {X}$ has Auslander-Reiten $n$-exact sequences.
References:
[1] Assem, I., Simson, D., Skowroński, A.: Elements of the Representation Theory of Associative Algebras. Vol. 1. Techniques of Representation Theory. London Mathematical Society Student Texts 65. Cambridge University Press, Cambridge (2006). DOI 10.1017/CBO9780511614309 | MR 2197389 | Zbl 1092.16001
[2] Auslander, M., Reiten, I.: Representation theory of Artin algebras. III. Almost split sequences. Commun. Algebra 3 (1975), 239-294. DOI 10.1080/00927877508822046 | MR 0379599 | Zbl 0331.16027
[3] Auslander, M., Reiten, I.: Representation theory of Artin algebras. IV. Invariants given by almost split sequences. Commun. Algebra 5 (1977), 443-518. DOI 10.1080/00927877708822180 | MR 0439881 | Zbl 0396.16007
[4] Auslander, M., Reiten, I., Smalø, S. O.: Representation Theory of Artin Algebras. Cambridge Studies in Advanced Mathematics 36. Cambridge University Press, Cambridge (1995). DOI 10.1017/CBO9780511623608 | MR 1314422 | Zbl 0834.16001
[5] Fedele, F.: Auslander-Reiten $(d+2)$-angles in subcategories and a $(d+2)$-angulated generalisation of a theorem by Brüning. J. Pure Appl. Algebra 223 (2019), 3554-3580. DOI 10.1016/j.jpaa.2018.11.017 | MR 3926227 | Zbl 1411.16017
[6] Fedele, F.: $d$-Auslander-Reiten sequences in subcategories. Proc. Edinb. Math. Soc., II. Ser. 63 (2020), 342-373. DOI 10.1017/S0013091519000312 | MR 4089379 | Zbl 1468.16028
[7] Geiss, C., Keller, B., Oppermann, S.: $n$-angulated categories. J. Reine Angew. Math. 675 (2013), 101-120. DOI 10.1515/CRELLE.2011.177 | MR 3021448 | Zbl 1271.18013
[8] Happel, D.: Triangulated Categories in the Representation Theory of Finite Dimensional Algebras. London Mathematical Society Lecture Note Series 119. Cambridge University Press, Cambridge (1988). DOI 10.1017/CBO9780511629228 | MR 0935124 | Zbl 0635.16017
[9] He, J., Zhang, J. Hu. D., Zhou, P.: On the existence of Auslander-Reiten $n$-exangles in $n$-exangulated categories. Ark. Mat. 60 (2022), 365-385. DOI 10.4310/ARKIV.2022.v60.n2.a8 | MR 4500371 | Zbl 1509.18006
[10] Iyama, O., Oppermann, S.: $n$-representation-finite algebras and $n$-APR tilting. Trans. Am. Math. Soc. 363 (2011), 6575-6614. DOI 10.1090/S0002-9947-2011-05312-2 | MR 2833569 | Zbl 1264.16015
[11] Iyama, O., Yoshino, Y.: Mutations in triangulated categories and rigid Cohen-Macaulay modules. Invent. Math. 172 (2008), 117-168. DOI 10.1007/s00222-007-0096-4 | MR 2385669 | Zbl 1140.18007
[12] Jasso, G.: $n$-abelian and $n$-exact categories. Math. Z. 283 (2016), 703-759. DOI 10.1007/s00209-016-1619-8 | MR 3519980 | Zbl 1356.18005
[13] Jiao, P.: The generalized Auslander-Reiten duality on an exact category. J. Algebra Appl. 17 (2018), Article ID 1850227, 14 pages. DOI 10.1142/S0219498818502274 | MR 3895199 | Zbl 1407.16014
[14] rgensen, P. Jø: Auslander-Reiten theory over topological spaces. Comment. Math. Helv. 79 (2004), 160-182. DOI 10.1007/S00014-001-0795-4 | MR 2031704 | Zbl 1053.55010
[15] rgensen, P. Jø: Auslander-Reiten triangles in subcategories. J. $K$-Theory 3 (2009), 583-601. DOI 10.1017/is008007021jkt056 | MR 2507732 | Zbl 1201.16021
[16] Lin, Z.: $n$-angulated quotient categories induced by mutation pairs. Czech. Math. J. 65 (2015), 953-968. DOI 10.1007/s10587-015-0220-3 | MR 3441328 | Zbl 1363.18009
[17] Lin, Z.: Right $n$-angulated categories arising from covariantly finite subcategories. Commun. Algebra 45 (2017), 828-840. DOI 10.1080/00927872.2016.1175591 | MR 3562541 | Zbl 1371.18010
[18] Liu, S., Niu, H.: Almost split sequences in tri-exact categories. J. Pure Appl. Algebra 226 (2022), Article ID 107092, 31 pages. DOI 10.1016/j.jpaa.2022.107092 | MR 4403638 | Zbl 1511.16004
[19] Oppermann, S., Thomas, H.: Higher-dimensional cluster combinatorics and representation theory. J. Eur. Math. Soc. (JEMS) 14 (2012), 1679-1737. DOI 10.4171/JEMS/345 | MR 2984586 | Zbl 1254.05197
[20] Shah, A.: Auslander-Reiten theory in quasi-abelian and Krull-Schmidt categories. J. Pure Appl. Algebra 224 (2020), 98-124. DOI 10.1016/j.jpaa.2019.04.017 | MR 3986413 | Zbl 1423.18033
[21] Zhou, P.: On the existence of Auslander-Reiten $(d+2)$-angles in $(d+2)$-angulated categories. Taiwanese. J. Math. 25 (2021), 233-249. DOI 10.11650/tjm/201102 | MR 4255209 | Zbl 1482.18008
[22] Zhou, P.: Higher-dimensional Auslander-Reiten theory on $(d+2)$-angulated categories. Glasg. Math. J. 64 (2022), 527-547. DOI 10.1017/S0017089521000343 | MR 4462377 | Zbl 1494.18010
[23] Zhou, P., Zhu, B.: $n$-abelian quotient categories. J. Algebra 527 (2019), 264-279. DOI 10.1016/j.jalgebra.2019.03.007 | MR 3924434 | Zbl 1470.18020
Partner of
EuDML logo