Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
regularity; depth; $\circ $ operation; $*$ operation; Cohen-Macaulay bipartite graph
Summary:
Let $G$ be a finite simple graph with the vertex set $V$ and let $I_G$ be its edge ideal in the polynomial ring $S= \mathbb {K} [V]$. We compute the depth and the Castelnuovo-Mumford regularity of $S/I_G$ when $G=G_1\circ G_2$ or $G=G_1* G_2$ is a graph obtained from Cohen-Macaulay bipartite graphs $G_1$, $G_2$ by the $\circ $ operation or $*$ operation, respectively.
References:
[1] Banerjee, A., Beyarslan, S. K., Hà, H. T.: Regularity of edge ideals and their powers. Advances in Algebra Springer Proceedings in Mathematics & Statistics 277. Springer, Cham (2019), 17-52. DOI 10.1007/978-3-030-11521-0_2 | MR 3922638 | Zbl 1418.13014
[2] Bıyıkoğlu, T., Civan, Y.: Vertex-decomposable graphs, codismantlability, Cohen-Macaulayness and Castelnuovo-Mumford regularity. Electron. J. Comb. 21 (2014), Article ID P1.1, 17 pages. DOI 10.37236/2387 | MR 3177496 | Zbl 1305.13007
[3] Bolognini, D., Macchia, A., Strazzanti, F.: Binomial edge ideals of bipartite graphs. Eur. J. Comb. 70 (2018), 1-25. DOI 10.1016/j.ejc.2017.11.004 | MR 3779601 | Zbl 1384.05094
[4] Bondy, J. A., Murty, U. S. R.: Graph Theory. Graduate Texts in Mathematics 244. Springer, Berlin (2008). DOI 10.1007/978-1-84628-970-5 | MR 2368647 | Zbl 1134.05001
[5] Francisco, C. A., Hà, H. T., Tuyl, A. Van: Splittings of monomial ideals. Proc. Am. Math. Soc. 137 (2009), 3271-3282. DOI 10.1090/S0002-9939-09-09929-8 | MR 2515396 | Zbl 1180.13018
[6] Fouli, L., Hà, H. T., Morey, S.: Initially regular sequences and depths of ideals. J. Algebra 559 (2020), 33-57. DOI 10.1016/j.jalgebra.2020.03.027 | MR 4093701 | Zbl 1442.13029
[7] Fouli, L., Morey, S.: A lower bound for depths of powers of edge ideals. J. Algebr. Comb. 42 (2015), 829-848. DOI 10.1007/s10801-015-0604-3 | MR 3403183 | Zbl 1330.05174
[8] Hà, H. T., Tuyl, A. Van: Monomial ideals, edge ideals of hypergraphs, and their graded Betti numbers. J. Algebr. Comb. 27 (2008), 215-245. DOI 10.1007/s10801-007-0079-y | MR 2375493 | Zbl 1147.05051
[9] Herzog, J.: A generalization of the Taylor complex construction. Commun. Algebra 35 (2007), 1747-1756. DOI 10.1080/00927870601139500 | MR 2317642 | Zbl 1121.13013
[10] Herzog, J., Hibi, T.: Distributive lattices, bipartite graphs and Alexander duality. J. Algebr. Comb. 22 (2005), 289-302. DOI 10.1007/s10801-005-4528-1 | MR 2181367 | Zbl 1090.13017
[11] Herzog, J., Hibi, T.: Monomial Ideals. Graduate Texts in Mathematics 260. Springer, London (2011). DOI 10.1007/978-0-85729-106-6 | MR 2724673 | Zbl 1206.13001
[12] Herzog, J., Moradi, S., Rahimbeigi, M.: The edge ideal of a graph and its splitting graphs. J. Commut. Algebra 14 (2022), 27-35. DOI 10.1216/jca.2022.14.27 | MR 4436334 | Zbl 1492.13026
[13] Hoa, L. T., Tam, N. D.: On some invariants of a mixed product of ideals. Arch. Math. 94 (2010), 327-337. DOI 10.1007/s00013-010-0112-6 | MR 2643966 | Zbl 1191.13032
[14] Kalai, G., Meshulam, R.: Intersections of Leray complexes and regularity of monomial ideals. J. Comb. Theory, Ser. A 113 (2006), 1586-1592. DOI 10.1016/j.jcta.2006.01.005 | MR 2259083 | Zbl 1105.13026
[15] Katzman, M.: Characteristic-independence of Betti numbers of graph ideals. J. Comb. Theory, Ser. A 113 (2006), 435-454. DOI 10.1016/j.jcta.2005.04.005 | MR 2209703 | Zbl 1102.13024
[16] Khosh-Ahang, F., Moradi, S.: Regularity and projective dimension of edge ideal of $C_5$-free vertex decomposable graphs. Proc. Am. Math. Soc. 142 (2014), 1567-1576. DOI 10.1090/S0002-9939-2014-11906-X | MR 3168464 | Zbl 1297.13019
[17] Kummini, M.: Regularity, depth and arithmetic rank of bipartite edge ideals. J. Algebr. Comb. 30 (2009), 429-445. DOI 10.1007/s10801-009-0171-6 | MR 2563135 | Zbl 1203.13018
[18] Mahmoudi, M., Mousivand, A., Crupi, M., Rinaldo, G., Terai, N., Yassemi, S.: Vertex decomposability and regularity of very well-covered graphs. J. Pure Appl. Algebra 215 (2011), 2473-2480. DOI 10.1016/j.jpaa.2011.02.005 | MR 2793950 | Zbl 1227.13017
[19] Morey, S., Villarreal, R. H.: Edge ideals: Algebraic and combinatorial properties. Progress in Commutative Algebra 1 Walter de Gruyter, Berlin (2012), 85-126. DOI 10.1515/9783110250404.85 | MR 2932582 | Zbl 1246.13001
[20] Shen, Y. H., Zhu, G.: Generalized binomial edge ideals of bipartite graphs. Available at https://arxiv.org/abs/2305.05365 (2023), 31 pages. DOI 10.48550/arXiv.2305.05365 | MR 4794080
[21] Tuyl, A. Van: Sequentially Cohen-Macaulay bipartite graphs: Vertex decomposability and regularity. Arch. Math. 93 (2009), 451-459. DOI 10.1007/s00013-009-0049-9 | MR 2563591 | Zbl 1184.13062
[22] Villarreal, R. H.: Monomial Algebras. Pure and Applied Mathematics, Marcel Dekker 238. Marcel Dekker, New York (2001). MR 1800904 | Zbl 1002.13010
[23] Woodroofe, R.: Matchings, coverings, and Castelnuovo-Mumford regularity. J. Commut. Algebra 6 (2014), 287-304. DOI 10.1216/JCA-2014-6-2-287 | MR 3249840 | Zbl 1330.13040
[24] Zhu, G.: Projective dimension and regularity of the path ideals of the line graph. J. Algebra Appl. 17 (2018), Article ID 1850068, 15 pages. DOI 10.1142/S0219498818500688 | MR 3786747 | Zbl 1394.13019
[25] Zhu, G.: Projective dimension and regularity of path ideals of cycles. J. Algebra Appl. 17 (2018), Article ID 1850188, 22 pages. DOI 10.1142/S0219498818501888 | MR 3866761 | Zbl 1407.13014
[26] Zhu, G., Cui, Y., Yang, Y., Yang, Y.: The $\circ$ operation and $*$ operation of fan graphs. Available at https://arxiv.org/abs/2308.06010 (2023), 18 pages. DOI 10.48550/arXiv.2308.06010
Partner of
EuDML logo