Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
comma category; cocompatible functor; cotorsion pair
Summary:
Let $\mathcal {A}$ and $\mathcal {B}$ be abelian categories with enough projective and injective objects, and $T \colon \mathcal {A}\rightarrow \mathcal {B}$ a left exact additive functor. Then one has a comma category $(\mathopen {\mathcal {B} \downarrow T})$. It is shown that if $T \colon \mathcal {A}\rightarrow \mathcal {B}$ is $\mathcal {X}$-exact, then $(^\bot \mathcal {X}, \mathcal {X})$ is a (hereditary) cotorsion pair in $\mathcal {A}$ and $(^\bot \mathcal {Y}, \mathcal {Y})$) is a (hereditary) cotorsion pair in $\mathcal {B}$ if and only if $\bigl (\binom {^\bot \mathcal {X}}{^\bot \mathcal {Y}} \bigr ), \langle {\bf h}(\mathcal {X}, \mathcal {Y})\rangle )$ is a (hereditary) cotorsion pair in $(\mathopen {\mathcal {B}\downarrow T})$ and $\mathcal {X}$ and $\mathcal {Y}$ are closed under extensions. Furthermore, we characterize when special preenveloping classes in abelian categories $\mathcal {A}$ and $\mathcal {B}$ can induce special preenveloping classes in $(\mathopen {\mathcal {B}\downarrow T})$.
References:
[1] Assem, I., Simson, D., Skowroński, A.: Elements of the Representation Theory of Associative Algebras. Volume 1. Techniques of Representation Theory. London Mathematical Society Student Texts 65. Cambridge University Press, Cambridge (2006). DOI 10.1017/CBO9780511614309 | MR 2197389 | Zbl 1092.16001
[2] Chen, X.-W., Le, J.: Recollements, comma categories and morphic enhancements. Proc. R. Soc. Edinb., Sect. A, Math. 152 (2022), 567-591. DOI 10.1017/prm.2021.8 | MR 4430943 | Zbl 1497.18021
[3] Chen, X.-W., Shen, D., Zhou, G.: The Gorenstein-projective modules over a monomial algebra. Proc. R. Soc. Edinb., Sect. A, Math. 148 (2018), 1115-1134. DOI 10.1017/S0308210518000185 | MR 3869172 | Zbl 1403.16008
[4] Fossum, R. M., Griffith, P. A., Reiten, I.: Trivial Extensions of Abelian Categories: Homological Algebra of Trivial Extensions of Abelian Categories With Applications to Ring Theory. Lecture Notes in Mathematics 456. Springer, Berlin (1975). DOI 10.1007/bfb0065404 | MR 389981 | Zbl 0303.18006
[5] Gabriel, P., Roiter, A. V.: Representations of Finite-Dimensional Algebras. Encyclopaedia of Mathematical Sciences 73. Springer, Berlin (1992). MR 1239447 | Zbl 0839.16001
[6] Göbel, R., Trlifaj, J.: Approximations and Endomorphism Algebras of Modules. Volume 2. Predictions. De Gruyter Expositions in Mathematics. Walter de Gruyter, Berlin (2012). DOI 10.1515/9783110218114 | MR 2985654 | Zbl 1292.16001
[7] Hovey, M.: Cotorsion pairs and model categories. Interactions Between Homotopy Theory and Algebra Contemporary Mathematics 436. AMS, Providence (2007), 277-296. DOI 10.1090/conm/436 | MR 2355778 | Zbl 1129.18004
[8] Hu, J., Zhu, H.: Special precovering classes in comma categories. Sci. China, Math. 65 (2022), 933-950. DOI 10.1007/s11425-020-1790-9 | MR 4412784 | Zbl 1485.18001
[9] Kalck, M.: Singularity categories of gentle algebras. Bull. Lond. Math. Soc. 47 (2015), 65-74. DOI 10.1112/blms/bdu093 | MR 3312965 | Zbl 1323.16012
[10] Marmaridis, N.: Comma categories in representation theory. Commun. Algebra 11 (1983), 1919-1943. DOI 10.1080/00927878308822941 | MR 709023 | Zbl 0518.16011
[11] Salce, L.: Cotorsion theories for abelian groups. Symposia Mathematica. Volume 23 Academic Press, London (1979), 11-32. MR 0565595 | Zbl 0426.20044
Partner of
EuDML logo