Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
perfect numerical semigroup; saturated numerical semigroup; Arf numerical semigroup; covariety; Frobenius number; genus; algorithm
Summary:
Let $S$ be a numerical semigroup. We say that $h\in \mathbb {N} \backslash S$ is an isolated gap of $S$ if $\{h-1,h+1\}\subseteq S.$ A numerical semigroup without isolated gaps is called a perfect numerical semigroup. Denote by ${\rm m} (S)$ the multiplicity of a numerical semigroup $S$. A covariety is a nonempty family $\scr {C}$ of numerical semigroups that fulfills the following conditions: there exists the minimum of $\scr {C},$ the intersection of two elements of $\scr {C}$ is again an element of $\scr {C}$, and $S\backslash \{{\rm m}(S)\}\in \scr {C}$ for all $S\in \scr {C}$ such that $S\neq \min (\scr {C}).$ We prove that the set $\scr {P}(F)=\{S\colon S$ is a perfect numerical semigroup with Frobenius number $F\}$ is a covariety. Also, we describe three algorithms which compute: the set $\scr {P}(F),$ the maximal elements of $\scr {P}(F)$, and the elements of $\scr {P}(F)$ with a given genus. A ${\rm Parf}$-semigroup (or ${\rm Psat}$-semigroup) is a perfect numerical semigroup that in addition is an Arf numerical semigroup (or saturated numerical semigroup), respectively. We prove that the sets ${\rm Parf}(F)=\{S\colon S$ is a ${\rm Parf}$-numerical semigroup with Frobenius number $F\}$ and ${\rm Psat}(F)=\{S\colon S$ is a ${\rm Psat}$-numerical semigroup with Frobenius number $F\}$ are covarieties. As a consequence we present some algorithms to compute ${\rm Parf}(F)$ and ${\rm Psat}(F).$
References:
[1] Apéry, R.: Sur les branches superlinéaires des courbes algébriques. C.R. Acad. Sci., Paris 222 (1946), 1198-1200 French. MR 0017942 | Zbl 0061.35404
[2] Arf, C.: Une interprétation algébraique de la suite des ordres de multiplicité d'une branche algébrique. Proc. Lond. Math. Soc., II. Ser 50 (1948), 256-287 French. DOI 10.1112/plms/s2-50.4.256 | MR 0031785 | Zbl 0031.07002
[3] Barucci, V., Dobbs, D. E., Fontana, M.: Maximality properties in numerical semigroups and applications to one-dimensional analytically irreducible local domains. Mem. Am. Math. Soc. 598 (1997), 78 pages. DOI 10.1090/memo/0598 | MR 1357822 | Zbl 0868.13003
[4] Campillo, A.: On saturations of curve singularities (any characteristic). Singularities, Part 1 Proceedings of Symposia in Pure Mathematics 40. AMS, Providence (1983), 211-220. DOI 10.1090/pspum/040.1 | MR 0713060 | Zbl 0553.14013
[5] Delgado, M., García-Sánchez, P. A., Morais, J.: NumericalSgps: A package to compute with numerical semigroups. Available at \brokenlink{ https://www.gap-system.org/Packages/{numericalsgps.html}}, Version 1.3.1 (2022).
[6] Mata, M. Delgado de la, Jiménez, C. A. Núñez: Monomial rings and saturated rings. Géométrie algébrique et applications. I Travaux en Cours 22. Hermann, Paris (1987), 23-34. MR 0907904 | Zbl 0636.14009
[7] Fröberg, R., Gottlieb, G., Häggkvist, R.: On numerical semigroups. Semigroup Forum 35 (1987), 63-83. DOI 10.1007/BF02573091 | MR 0880351 | Zbl 0614.10046
[8] Group, GAP: GAP Groups, Algorithms, Programming -- a System for Computational Discrete Algebra. Available at https://www.gap-system.org/, Version 4.12.2 (2022).
[9] Lipman, J.: Stable ideals and Arf rings. Am. J. Math. 93 (1971), 649-685. DOI 10.2307/2373463 | MR 0282969 | Zbl 0228.13008
[10] Moreno-Frías, M. Á., Rosales, J. C.: Perfect numerical semigroups. Turk. J. Math. 43 (2019), 1742-1754. DOI 10.3906/mat-1901-111 | MR 3962563 | Zbl 1512.20207
[11] Moreno-Frías, M. Á., Rosales, J. C.: The set of Arf numerical semigroup with given Frobenius number. Turk. J. Math. 47 (2023), 1392-1405. DOI 10.55730/1300-0098.3436 | MR 4623143 | Zbl 1522.20225
[12] Moreno-Frías, M. Á., Rosales, J. C.: The covariety of saturated numerical semigroup with fixed Frobenius number. Foundations 4, (2024), 249-262. DOI 10.3390/foundations4020016 | MR 4798741
[13] Moreno-Frías, M. Á., Rosales, J. C.: The covariety of numerical semigroups with fixed Frobenius number. (to appear) in J. Algebr. Comb. DOI 10.1007/s10801-024-01342-x | MR 4798741
[14] Núñez, A.: Algebro-geometric properties of saturated rings. J. Pure Appl. Algebra 59 (1989), 201-214. DOI 10.1016/0022-4049(89)90135-7 | MR 1007922 | Zbl 0701.14026
[15] Pham, F.: Fractions lipschitziennes et saturation de Zariski des algèbres analytiques complexes. Actes du Congrès International des Mathématiciens. Tome 2 Gautier-Villars, Paris (1971), 649-654 French. MR 0590058 | Zbl 0245.32003
[16] Alfonsín, J. L. Ramírez: Complexity of the Frobenius problem. Combinatorica 16 (1996), 143-147. DOI 10.1007/BF01300131 | MR 1394516 | Zbl 0847.68036
[17] Alfonsín, J. L. Ramírez: The Diophantine Frobenius Problem. Oxford Lecture Series in Mathematics and its Applications 30. Oxford University Press, Oxford (2005). DOI 10.1093/acprof:oso/9780198568209.001.0001 | MR 2260521 | Zbl 1134.11012
[18] Robles-Pérez, A. M., Rosales, J. C.: The enumeration of the set of atomic numerical semigroups with fixed Frobenius number. J. Algebra Appl. 19 (2020), Article ID 2050144, 10 pages. DOI 10.1142/S0219498820501443 | MR 4131577 | Zbl 1508.20104
[19] Rosales, J. C., Branco, M. B.: Numerical semigroups that can be expressed as an intersection of symmetric numerical semigroups. J. Pure Appl. Algebra 171 (2002), 303-314. DOI 10.1016/S0022-4049(01)00128-1 | MR 1904486 | Zbl 1006.20043
[20] Rosales, J. C., Branco, M. B.: A problem of integer partitions and numerical semigroups. Proc. R. Soc. Edinb., Sect. A, Math. 149 (2019), 969-978. DOI 10.1017/prm.2018.65 | MR 3988630 | Zbl 1484.05019
[21] Rosales, J. C., García-Sánchez, P. A.: Numerical Semigroups. Developments in Mathematics 20. Springer, New York (2009). DOI 10.1007/978-1-4419-0160-6 | MR 2549780 | Zbl 1220.20047
[22] Sylvester, J. J.: Problem 7382. Mathematical questions, with their solutions, from the Educational Times 41 (1884), page 21. MR 1003160
[23] Zariski, O.: General theory of saturation and of saturated local rings. I. Saturation of complete local domains of dimension one having arbitrary coefficient fields (of characteristic zero). Am. J. Math. 93 (1971), 573-684. DOI 10.2307/2373462 | MR 0282972 | Zbl 0226.13013
[24] Zariski, O.: General theory of saturation and of saturated local rings. II. Saturated local rings of dimension 1. Am. J. Math. 93 (1971), 872-964. DOI 10.2307/2373741 | MR 0299607 | Zbl 0228.13007
[25] Zariski, O.: General theory of saturation and of saturated local rings. III. Saturation in arbitrary dimension and, in particular, saturation of algebroid hypersurfaces. Am. J. Math. 97 (1975), 415-502. DOI 10.2307/2373720 | MR 0389893 | Zbl 0306.13009
Partner of
EuDML logo