[1] Apéry, R.:
Sur les branches superlinéaires des courbes algébriques. C.R. Acad. Sci., Paris 222 (1946), 1198-1200 French.
MR 0017942 |
Zbl 0061.35404
[3] Barucci, V., Dobbs, D. E., Fontana, M.:
Maximality properties in numerical semigroups and applications to one-dimensional analytically irreducible local domains. Mem. Am. Math. Soc. 598 (1997), 78 pages.
DOI 10.1090/memo/0598 |
MR 1357822 |
Zbl 0868.13003
[6] Mata, M. Delgado de la, Jiménez, C. A. Núñez:
Monomial rings and saturated rings. Géométrie algébrique et applications. I Travaux en Cours 22. Hermann, Paris (1987), 23-34.
MR 0907904 |
Zbl 0636.14009
[8] Group, GAP:
GAP Groups, Algorithms, Programming -- a System for Computational Discrete Algebra. Available at
https://www.gap-system.org/, Version 4.12.2 (2022).
[15] Pham, F.:
Fractions lipschitziennes et saturation de Zariski des algèbres analytiques complexes. Actes du Congrès International des Mathématiciens. Tome 2 Gautier-Villars, Paris (1971), 649-654 French.
MR 0590058 |
Zbl 0245.32003
[22] Sylvester, J. J.:
Problem 7382. Mathematical questions, with their solutions, from the Educational Times 41 (1884), page 21.
MR 1003160
[23] Zariski, O.:
General theory of saturation and of saturated local rings. I. Saturation of complete local domains of dimension one having arbitrary coefficient fields (of characteristic zero). Am. J. Math. 93 (1971), 573-684.
DOI 10.2307/2373462 |
MR 0282972 |
Zbl 0226.13013
[25] Zariski, O.:
General theory of saturation and of saturated local rings. III. Saturation in arbitrary dimension and, in particular, saturation of algebroid hypersurfaces. Am. J. Math. 97 (1975), 415-502.
DOI 10.2307/2373720 |
MR 0389893 |
Zbl 0306.13009