Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
linear derivation; ring of constant; Fermat ring; Darboux polynomial; simple derivation
Summary:
At first we prove some results on a general polynomial derivation using few results of linear derivation. Then we study the ring of constants of a linear derivation for some rings. We know that any linear derivation is a nonsimple derivation. In the last section we find the smallest integer $w > 1 $ such that the polynomial ring in $n$ variables is $w$-differentially simple, all $w$ derivations are nonsimple and the $w$ derivations set contains a linear derivation.
References:
[1] Baltazar, R.: Simplicity and commutative bases of derivations in polynomial and power series rings. ISRN Algebra 2013 (2013), Article ID 560648, 4 pages. DOI 10.1155/2013/560648 | MR 3150073 | Zbl 1291.13032
[2] Coutinho, S. C., Levcovitz, D.: On the differential simplicity of affine rings. Proc. Am. Math. Soc. 142 (2014), 1701-1704. DOI 10.1090/S0002-9939-2014-11652-2 | MR 3168476 | Zbl 1311.13035
[3] Ferragut, A., Gasull, A.: Seeking Darboux polynomials. Acta Appl. Math. 139 (2015), 167-186. DOI 10.1007/s10440-014-9974-0 | MR 3400587 | Zbl 1365.34060
[4] Lequain, Y.: Differential simplicity and complete integral closure. Pac. J. Math. 36 (1971), 741-751. DOI 10.2140/pjm.1971.36.741 | MR 0284422 | Zbl 0188.09702
[5] Nowicki, A.: Polynomial Derivations and Their Rings of Constants. Nicolaus Copernicus University Press, Toruń (1994). MR 2553232 | Zbl 1236.13023
[6] Nowicki, A.: On the nonexistence of rational first integrals for systems of linear differential equations. Linear Algebra Appl. 235 (1996), 107-120. DOI 10.1016/0024-3795(94)00122-7 | MR 1374254 | Zbl 0843.34013
[7] Nowicki, A., Zieliński, J.: Rational constants of monomial derivations. J. Algebra 302 (2006), 387-418. DOI 10.1016/j.jalgebra.2006.02.034 | MR 2236608 | Zbl 1119.13021
[8] Veloso, M., Shestakov, I.: Rings of constants of linear derivations on Fermat rings. Commun. Algebra 46 (2018), 5469-5479. DOI 10.1080/00927872.2018.1469032 | MR 3923774 | Zbl 1461.13031
Partner of
EuDML logo