Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
finitistic dimension; Gorenstein projective module; endomorphism algebra
Summary:
Let $A$ be a CM-finite Artin algebra with a Gorenstein-Auslander generator $E$, $M$ be a Gorenstein projective $A$-module and $B = {\rm End}_A M$. We give an upper bound for the finitistic dimension of $B$ in terms of homological data of $M$. Furthermore, if $A$ is $n$-Gorenstein for $2 \leq n < \infty $, then we show the global dimension of $B$ is less than or equal to $n$ plus the $B$-projective dimension of ${\rm Hom}_A(M, E).$ As an application, the global dimension of ${\rm End}_A E$ is less than or equal to $n$.
References:
[1] Auslander, M., Bridger, M.: Stable Module Theory. Memoirs of the American Mathematical Society 94. AMS, Providence (1969). DOI 10.1090/memo/0094 | MR 0269685 | Zbl 0204.36402
[2] Auslander, M., Reiten, I., Smalø, S. O.: Representation Theory of Artin Algebras. Cambridge Studies in Advanced Mathematics 36. Cambridge University Press, Cambridge (1995). DOI 10.1017/CBO9780511623608 | MR 1314422 | Zbl 0834.16001
[3] Avramov, L. L., Martsinkovsky, A.: Absolute, relative, and Tate cohomology of modules of finite Gorenstein dimension. Proc. Lond. Math. Soc., III. Ser. 85 (2002), 393-440. DOI 10.1112/S0024611502013527 | MR 1912056 | Zbl 1047.16002
[4] Christensen, L. W.: Gorenstein Dimension. Lecture Notes in Mathematics 1747. Springer, Berlin (2000). DOI 10.1007/BFb0103980 | MR 1799866 | Zbl 0965.13010
[5] Christensen, L. W., Foxby, H.-B., Frankild, A.: Restricted homological dimensions and Cohen-Macaulayness. J. Algebra 251 (2002), 479-502. DOI 10.1006/jabr.2001.9115 | MR 1900297 | Zbl 1073.13501
[6] Christensen, L. W., Frankild, A., Holm, H.: On Gorenstein projective, injective and flat dimensions -- a functorial description with applications. J. Algebra 302 (2006), 231-279. DOI 10.1016/j.jalgebra.2005.12.007 | MR 2236602 | Zbl 1104.13008
[7] Dlab, V., Ringel, C. M.: Every semiprimary ring is the endomorphism ring of a projective module over a quasihereditary ring. Proc. Am. Math. Soc. 107 (1989), 1-5. DOI 10.1090/S0002-9939-1989-0943793-2 | MR 0943793 | Zbl 0681.16015
[8] Enochs, E. E., Jenda, O. M. G.: On Gorenstein injective modules. Commun. Algebra 21 (1993), 3489-3501. DOI 10.1080/00927879308824744 | MR 1231612 | Zbl 0783.13011
[9] Enochs, E. E., Jenda, O. M. G.: Gorenstein injective and projective modules. Math. Z. 220 (1995), 611-633. DOI 10.1007/BF02572634 | MR 1363858 | Zbl 0845.16005
[10] Enochs, E. E., Jenda, O. M. G.: Relative Homological Algebra. de Gruyter Expositions in Mathematics 30. Walter de Gruyter, Berlin (2000). DOI 10.1515/9783110803662 | MR 1753146 | Zbl 0952.13001
[11] Enochs, E. E., Jenda, O. M. G., Xu, J.: Foxby duality and Gorenstein injective and projective modules. Trans. Am. Math. Soc. 348 (1996), 3223-3234. DOI 10.1090/S0002-9947-96-01624-8 | MR 1355071 | Zbl 0862.13004
[12] Eshraghi, H.: Representation dimension via tilting theory. J. Algebra 494 (2018), 77-91. DOI 10.1016/j.jalgebra.2017.10.003 | MR 3723171 | Zbl 1437.16006
[13] Foxby, H.-B.: Gorenstein dimensions over Cohen-Macaulay rings. Commutative Algebra Runge. Vechtaer Universitätsschriften, Cloppenburg (1994), 59-63. Zbl 0834.13014
[14] Holm, H.: Gorenstein homological dimensions. J. Pure Appl. Algebra 189 (2004), 167-193. DOI 10.1016/j.jpaa.2003.11.007 | MR 2038564 | Zbl 1050.16003
[15] Huang, C., Huang, Z.: Gorenstein syzygy modules. J. Algebra 324 (2010), 3408-3419. DOI 10.1016/j.jalgebra.2010.10.010 | MR 2735390 | Zbl 1216.16002
[16] Huang, Z., Sun, J.: Endomorphism algebras and Igusa-Todorov algebras. Acta Math. Hung. 140 (2013), 60-70. DOI 10.1007/s10474-013-0312-1 | MR 3123863 | Zbl 1311.16006
[17] Igusa, K., Todorov, G.: On the finitistic global dimension conjecture for Artin algebras. Representations of Algebras and Related Topics Fields Institute Communications 45. AMS, Providence (2005), 201-204. DOI 10.1090/fic/045 | MR 2146250 | Zbl 1082.16011
[18] Li, Z.-W., Zhang, P.: Gorenstein algebras of finite Cohen-Macaulay type. Adv. Math. 223 (2010), 728-734. DOI 10.1016/j.aim.2009.09.003 | MR 2565547 | Zbl 1184.16011
[19] Psaroudakis, C.: Homological theory of recollements of abelian categories. J. Algebra 398 (2014), 63-110. DOI 10.1016/j.jalgebra.2013.09.020 | MR 3123754 | Zbl 1314.18016
[20] Wei, J.: Finitistic dimension and restricted flat dimension. J. Algebra 320 (2008), 116-127. DOI 10.1016/j.jalgebra.2008.03.017 | MR 2417981 | Zbl 1160.16003
[21] Xi, C.: On the finitistic dimension conjecture. III. Related to the pair $eAe \subseteq A$. J. Algebra 319 (2008), 3666-3688. DOI 10.1016/j.jalgebra.2008.01.021 | MR 2407846 | Zbl 1193.16006
[22] Xu, D.: Homological dimensions and strongly idempotent ideals. J. Algebra 44 (2014), 175-189. DOI 10.1016/j.jalgebra.2014.05.020 | MR 3223395 | Zbl 1330.16003
[23] Zhang, A.: Endomorphism algebras of Gorenstein projective modules. J. Algebra Appl. 17 (2018), Article ID 1850177, 6 pages. DOI 10.1142/S0219498818501773 | MR 3846425 | Zbl 1418.16004
[24] Zhang, A., Zhang, S.: On the finitistic dimension conjecture of Artin algebras. J. Algebra 320 (2008), 253-258. DOI 10.1016/j.jalgebra.2007.12.011 | MR 2417987 | Zbl 1176.16014
[25] Zhang, P.: Triangulated Categories and Derived Categories. Science Press, Beijing (2015), Chinese.
Partner of
EuDML logo