Previous |  Up |  Next

Article

Title: Some extensions of Chu's formulas and further combinatorial identities (English)
Author: Zriaa, Said
Author: Mouçouf, Mohammed
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 149
Issue: 3
Year: 2024
Pages: 397-408
Summary lang: English
.
Category: math
.
Summary: We present some extensions of Chu's formulas and several striking generalizations of some well-known combinatorial identities. As applications, some new identities on binomial sums, harmonic numbers, and the generalized harmonic numbers are also derived. (English)
Keyword: partial fraction decomposition
Keyword: polynomial
Keyword: combinatorial identity
Keyword: harmonic number
Keyword: generalized harmonic number
Keyword: complete Bell polynomial
MSC: 05A10
MSC: 05A19
MSC: 11B65
idZBL: Zbl 07953709
idMR: MR4801108
DOI: 10.21136/MB.2023.0003-23
.
Date available: 2024-09-11T13:47:56Z
Last updated: 2024-12-13
Stable URL: http://hdl.handle.net/10338.dmlcz/152540
.
Reference: [1] Alzer, H., Chapman, R.: On Boole's formula for factorials.Australas. J. Comb. 59 (2014), 333-336. Zbl 1296.05013, MR 3245408
Reference: [2] Andrews, G. E.: Identities in combinatorics. I. On sorting two ordered sets.Discrete Math. 11 (1975), 97-106. Zbl 0301.05006, MR 0389609, 10.1016/0012-365X(75)90001-1
Reference: [3] Anglani, R., Barile, M.: Two very short proofs of a combinatorial identity.Integers 5 (2005), Article ID A18, 3 pages. Zbl 1102.11013, MR 2192237
Reference: [4] Batir, N.: On some combinatorial identities and harmonic sums.Int. J. Number Theory 13 (2017), 1695-1709. Zbl 1376.11065, MR 3667490, 10.1142/S179304211750097X
Reference: [5] Belbahri, K.: Scale invariant operators and combinatorial expansions.Adv. Appl. Math. 45 (2010), 548-563. Zbl 1226.05049, MR 2679931, 10.1016/j.aam.2010.01.010
Reference: [6] Boole, G.: Calculus of Finite Differences.Chelsea, New York (1958). Zbl 0084.07701, MR 0115025
Reference: [7] Choi, J.: Summation formulas involving binomial coefficients, harmonic numbers, and generalized harmonic numbers.Abst. Appl. Anal. 2014 (2014), Article ID 501906, 10 pages. Zbl 1422.11033, MR 3246339, 10.1155/2014/501906
Reference: [8] Chu, W.: Harmonic number identities and Hermite-Padé approximations to the logarithm function.J. Approximation Theory 137 (2005), 42-56. Zbl 1082.41014, MR 2179622, 10.1016/j.jat.2005.07.008
Reference: [9] Comtet, L.: Advanced Combinatorics: The Art of Finite and Infinite Expansions.D. Reidel, Dordrecht (1974). Zbl 0283.05001, MR 0460128, 10.1007/978-94-010-2196-8
Reference: [10] Driver, K., Prodinger, H., Schneider, C., Weideman, J. A. C.: Padé approximations to the logarithm. II. Identities, recurrences and symbolic computation.Ramanujan J. 11 (2006), 139-158. Zbl 1102.41015, MR 2267670, 10.1007/s11139-006-6503-4
Reference: [11] Elsner, C.: On recurrence formulae for sums involving binomial coefficients.Fibonacci Q. 43 (2005), 31-45. Zbl 1136.40301, MR 2129118, 10.1080/00150517.2005.12428390
Reference: [12] Flajolet, P., Vepstas, L.: On differences of zeta values.J. Comput. Appl. Math. 220 (2008), 58-73. Zbl 1147.11046, MR 2444154, 10.1016/j.cam.2007.07.040
Reference: [13] Gonzáles, L.: A new approach for proving or generating combinatorial identities.Int. J. Math. Educ. Sci. Technol. 41 (2010), 359-372. Zbl 1292.97051, MR 2786266, 10.1080/00207390903398382
Reference: [14] Gould, H. W.: Combinatorial Identities: A Standardized Set of Tables Listing 500 Binomial Coefficient Summations.Henry W. Gould, Morgantown (1972). Zbl 0241.05011, MR 0354401
Reference: [15] Gould, H. W.: Euler's formula for $n$th differences of powers.Am. Math. Mon. 85 (1978), 450-467. Zbl 0397.10055, MR 0480057, 10.2307/2320064
Reference: [16] Graham, R. L., Knuth, D. E., Patashnik, O.: Concrete Mathematics: A Foundation for Computer Science.Addison-Wesley, Reading (1989). Zbl 0668.00003, MR 1001562
Reference: [17] Holland, F.: A proof, a consequence and an application of Boole's combinatorial identity.Ir. Math. Soc. Bull. 89 (2022), 25-28. Zbl 1493.05031, MR 4467082, 10.33232/BIMS.0089.25.28
Reference: [18] Ismail, M. E. H., Stanton, D.: Some combinatorial and analytical identities.Ann. Comb. 16 (2012), 755-771. Zbl 1256.05021, MR 3000443, 10.1007/s00026-012-0158-1
Reference: [19] Karatsuba, E. A.: On a method for constructing a family of approximations of zeta constants by rational fractions.Probl. Inf. Transm. 51 (2015), 378-390. Zbl 1387.11094, MR 3449580, 10.1134/S0032946015040079
Reference: [20] Karatsuba, E. A.: On a method of evaluation of zeta-constants based on one number theoretic approach.Available at https://arxiv.org/abs/1805.02076 (2018), 19 pages. MR 4429764, 10.48550/arXiv.1805.02076
Reference: [21] Karatsuba, E. A.: On an identity with binomial coefficients.Math. Notes 105 (2019), 145-147. Zbl 1416.11034, MR 3894458, 10.1134/S0001434619010176
Reference: [22] Katsuura, H.: Summations involving binomial coefficients.Coll. Math. J. 40 (2009), 275-278. MR 2548966, 10.1080/07468342.2009.11922375
Reference: [23] Krantz, S. G., Parks, H. R.: A Primer of Real Analytic Functions.Birkhäuser Advances Texts. Basler Lehrbücher. Birkhäuser, Boston (2002). Zbl 1015.26030, MR 1916029, 10.1007/978-0-8176-8134-0
Reference: [24] Krivokolesko, V. P.: Integral representations for linearly convex polyhedra and some combinatorial identities.J. Sib. Fed. Univ., Math. Phys. 2 (2009), 176-188. Zbl 07324709
Reference: [25] Mouçouf, M., Zriaa, S.: A new approach for computing the inverse of confluent Vandermonde matrices via Taylor's expansion.Linear Multilinear Algebra 70 (2022), 5973-5986. Zbl 1510.15009, MR 4525262, 10.1080/03081087.2021.1940807
Reference: [26] Nakata, T.: Another probabilistic proof of a binomial identity.Fibonacci Q. 52 (2014), 139-140. Zbl 1296.05016, MR 3214377, 10.1080/00150517.2014.12427904
Reference: [27] Peterson, J.: A probabilistic proof of a binomial identity.Am. Math. Mon. 120 (2013), 558-562. Zbl 1273.05012, MR 3063121, 10.4169/amer.math.monthly.120.06.558
Reference: [28] Pohoata, C.: Boole's formula as a consequence of Lagrange's interpolating polynomial theorem.Integers 8 (2008), Article ID A23, 2 pages. Zbl 1210.05008, MR 2425621
Reference: [29] Quaintance, J.: Combinatorial Identities for Stirling Numbers: The Unpublished Notes of H. W. Gould.World Scientific, Singapore (2015). Zbl 1343.11002, MR 3409093, 10.1142/9821
Reference: [30] Sarmanov, O. V., Sevast'yanov, B. A., Tarakanov, V. E.: Some combinatorial identities.Math. Notes 11 (1972), 77-80. Zbl 0261.05012, MR 0289321, 10.1007/BF01366921
Reference: [31] Sofo, A., Srivastava, H. M.: Identities for the harmonic numbers and binomial coefficients.Ramanujan. J. 25 (2011), 93-113. Zbl 1234.11022, MR 2787293, 10.1007/s11139-010-9228-3
Reference: [32] Spivey, M. Z.: Probabilistic proofs of a binomial identity, its inverse, and generalizations.Am. Math. Mon. 123 (2016), 175-180. Zbl 1339.05029, MR 3470509, 10.4169/amer.math.monthly.123.2.175
Reference: [33] Strehl, V.: Binomial identities -- combinatorial and algorithmic aspects.Discrete. Math. 136 (1994), 309-346. Zbl 0823.33003, MR 1313292, 10.1016/0012-365X(94)00118-3
Reference: [34] Vellaisamy, P.: On probabilistic proofs of certain binomial identities.Am. Stat. 69 (2015), 241-243. Zbl 07671735, MR 3391644, 10.1080/00031305.2015.1056381
Reference: [35] Weideman, J. A. C.: Padé approximations to the logarithm. I. Derivation via differential equations.Quaest. Math. 28 (2005), 375-390. Zbl 1085.41011, MR 2164379, 10.2989/16073600509486135
Reference: [36] Wituła, R., Hetmaniok, E., S{ł}ota, D., Gawrońska, N.: Convolution identities for central binomial numbers.Int. J. Pure Appl. Math. 85 (2013), 171-178. 10.12732/ijpam.v85i1.14
Reference: [37] Zhu, J.-M., Luo, Q.-M.: A novel proof of two partial fraction decompositions.Adv. Difference Equ. 2021 (2021), Article ID 274, 8 pages. Zbl 1494.05012, MR 4268818, 10.1186/s13662-021-03433-6
.

Files

Files Size Format View
MathBohem_149-2024-3_7.pdf 232.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo