Title:
|
On the class of positive disjoint weak $p$-convergent operators (English) |
Author:
|
Retbi, Abderrahman |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
149 |
Issue:
|
3 |
Year:
|
2024 |
Pages:
|
409-418 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We introduce and study the disjoint weak $p$-convergent operators in Banach lattices, and we give a characterization of it in terms of sequences in the positive cones. As an application, we derive the domination and the duality properties of the class of positive disjoint weak $p$-convergent operators. Next, we examine the relationship between disjoint weak $p$-convergent operators and disjoint $p$-convergent operators. Finally, we characterize order bounded disjoint weak $p$-convergent operators in terms of sequences in Banach lattices. (English) |
Keyword:
|
$p$-convergent operator |
Keyword:
|
disjoint $p$-convergent operator |
Keyword:
|
positive Schur property of order $p$ |
Keyword:
|
order continuous norm |
Keyword:
|
Banach lattice |
MSC:
|
46A40 |
MSC:
|
46B40 |
MSC:
|
46B42 |
idZBL:
|
Zbl 07953710 |
idMR:
|
MR4801109 |
DOI:
|
10.21136/MB.2023.0160-22 |
. |
Date available:
|
2024-09-11T13:48:30Z |
Last updated:
|
2024-12-13 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/152541 |
. |
Reference:
|
[1] Alikhani, M., Fakhar, M., Zafarani, J.: $p$-convergent operators and the $p$-Schur property.Anal. Math. 46 (2020), 1-12. Zbl 1449.46021, MR 4064575, 10.1007/s10476-020-0011-4 |
Reference:
|
[2] Aliprantis, C. D., Burkinshaw, O.: Positive Operators.Springer, Dordrecht (2006). Zbl 1098.47001, MR 2262133, 10.1007/978-1-4020-5008-4 |
Reference:
|
[3] Castillo, J. M. F., Sánchez, F.: Dunford-Pettis-like properties of continuous vector function spaces.Rev. Mat. Univ. Complutense Madr. 6 (1993), 43-59. Zbl 0807.46033, MR 1245024 |
Reference:
|
[4] Chen, D., Chávez-Domínguez, J. A., Li, L.: $p$-converging operators and Dunford-Pettis property of order $p$.J. Math. Anal. Appl. 461 (2018), 1053-1066. Zbl 1464.46008, MR 3765477, 10.1016/j.jmaa.2018.01.051 |
Reference:
|
[5] Dehghani, M. B., Moshtaghioun, S. M.: On the $p$-Schur property of Banach spaces.Ann. Funct. Anal. 9 (2018), 123-136. Zbl 1486.46008, MR 3758748, 10.1215/20088752-2017-0033 |
Reference:
|
[6] Diestel, J.: Sequences and Series in Banach Spaces.Graduate Texts in Mathematics 92. Springer, New York (1984). Zbl 0542.46007, MR 0737004, 10.1007/978-1-4612-5200-9 |
Reference:
|
[7] Diestel, J., Jarchow, H., Tonge, A.: Absolutely Summing Operators.Cambridge Studies in Advanced Mathematics 43. Cambridge University Press, Cambridge (1995). Zbl 0855.47016, MR 1342297, 10.1017/CBO9780511526138 |
Reference:
|
[8] Dodds, P. G., Fremlin, D. H.: Compact operators in Banach lattices.Isr. J. Math. 34 (1979), 287-320. Zbl 0438.47042, MR 0570888, 10.1007/BF02760610 |
Reference:
|
[9] Dunford, N., Schwartz, J. T.: Linear Operators. I. General Theory.Pure and Applied Mathematics 7. Interscience Publishers, New York (1958). Zbl 0084.10402, MR 0117523 |
Reference:
|
[10] Ghenciu, I.: The $p$-Gelfand-Phillips property in space of operators and Dunford-Pettis like sets.Acta Math. Hung. 155 (2018), 439-457. Zbl 1413.46015, MR 3831309, 10.1007/s10474-018-0836-5 |
Reference:
|
[11] Wnuk, W.: Banach lattices with the weak Dunford-Pettis property.Atti Semin. Mat. Fis. Univ. Modena 42 (1994), 227-236. Zbl 0805.46023, MR 1282338 |
Reference:
|
[12] Zeekoei, E. D., Fourie, J. H.: On $p$-convergent operators on Banach lattices.Acta Math. Sin., Engl. Ser. 34 (2018), 873-890. Zbl 06881942, MR 3785686, 10.1007/s10114-017-7172-5 |
. |