[2] Baiocchi, C., Capelo, A.:
Variational and Quasivariational Inequalities: Applications to Free Boundary Problems. John Wiley & Sons, Chichester (1984).
MR 0745619 |
Zbl 0551.49007
[5] Benaceur, A., Ern, A., Ehrlacher, V.:
A reduced basis method for parametrized variational inequalities applied to contact mechanics. Int. J. Numer. Methods Eng. 121 (2020), 1170-1197.
DOI 10.1002/nme.6261 |
MR 4072510 |
Zbl 07843242
[6] Bonfanti, A., Kaplan, J. L., Charras, G., Kabla, A.:
Fractional viscoelastic models for power-law materials. Soft Matter 16 (2020), 6002-6020.
DOI 10.1039/D0SM00354A
[8] Bouallala, M., Essoufi, El-H., Nguyen, V. T., Pang, W.:
A time-fractional of a viscoelastic frictionless contact problem with normal compliance. Eur. Phys. J. Spec. Topics 232 (2023), 2549-2558.
DOI 10.1140/epjs/s11734-023-00962-x
[10] Carstensen, C., Gwinner, J.:
A theory of discretization for nonlinear evolution inequalities applied to parabolic Signorini problems. Ann. Mat. Pura Appl., IV. Ser. 177 (1999), 363-394.
DOI 10.1007/BF02505918 |
MR 1747640 |
Zbl 0954.65052
[11] Cen, J., Liu, Y., Nguen, V. T., Zeng, S.:
Existence of solutions for fractional evolution inclusion with application to mechanical contact problems. Fractals 29 (2021), Article ID 2140036, 14 pages.
DOI 10.1142/S0218348X21400363 |
Zbl 1512.34109
[18] Hung, N. V., Tam, V. M.:
Error bound analysis of the $D$-gap functions for a class of elliptic variational inequalities with applications to frictional contact mechanics. Z. Angew. Math. Phys. 72 (2021), Article ID 173, 17 pages.
DOI 10.1007/s00033-021-01602-x |
MR 4300248 |
Zbl 1518.47094
[19] Kačur, J.:
Method of Rothe in Evolution Equations. Teubner-Texte zur Mathematik 80. B. G. Teubner, Leipzig (1985).
MR 0834176 |
Zbl 0582.65084
[32] Migórski, S., Ochal, A., Sofonea, M.:
Nonlinear Inclusions and Hemivariational Inequalities: Models and Analysis of Contact Problems. Advances in Mechanics and Mathematics 26. Springer, Berlin (2013).
DOI 10.1007/978-1-4614-4232-5 |
MR 2976197 |
Zbl 1262.49001
[37] Podlubny, I.:
Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Mathematics in Science and Engineering 198. Academic Press, San Diego (1999).
MR 1658022 |
Zbl 0924.34008
[38] P. E. Rouse, Jr.:
The theory of the linear viscoleastic properties of dilute solutions of coiling polymers. J. Chem. Phys. 21 (1953), 1272-1280.
DOI 10.1063/1.1699180
[39] Shen, S., Liu, F., Chen, J., Turner, I., Anh, V.:
Numerical techniques for the variable order time fractional diffusion equation. Appl. Math. Comput. 218 (2012), 10861-10870.
DOI 10.1016/j.amc.2012.04.047 |
MR 2942371 |
Zbl 1280.65089
[40] Shillor, M., Sofonea, M., Telega, J. J.:
Models and Analysis of Quasistatic Contact: Variational Methods. Lecture Notes in Physics 655. Springer, Berlin (2004).
DOI 10.1007/b99799 |
Zbl 1069.74001
[41] Sofonea, M., Matei, A.:
Mathematical Models in Contact Mechanics. London Mathematical Society Lecture Note Series 398. Cambridge University Press, Cambridge (2012).
DOI 10.1017/CBO9781139104166 |
Zbl 1255.49002
[43] Yuan, L., Agrawal, O. P.:
A numerical scheme for dynamic systems containing fractional derivatives. J. Vib. Acoust. 124 (2002), 321-324.
DOI 10.1115/1.1448322
[46] Zeng, F., Li, C., Liu, F., Turner, I.:
The use of finite difference/element approaches for solving the time-fractional subdiffusion equation. SIAM J. Sci. Comput. 35 (2013), A2976--A3000.
DOI 10.1137/130910865 |
MR 3143842 |
Zbl 1292.65096