Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
hemivariational inequality; Rothe method; Clarke subdifferential; Caputo derivative; fractional viscoelastic constitutive law; contact with friction; numerical scheme; finite element method; convergence analysis; error estimation
Summary:
We investigate a generalized class of fractional hemivariational inequalities involving the time-fractional aspect. The existence result is established by employing the Rothe method in conjunction with the surjectivity of multivalued pseudomonotone operators and the properties of the Clarke generalized gradient. We are also exploring a numerical approach to address the problem, utilizing both spatially semi-discrete and fully discrete finite elements, along with a discrete approximation of the fractional derivative. All these results are applied to the analysis and numerical approximations of a frictional contact model that describes the quasi-static contact between a viscoelastic body and a solid foundation. The constitutive relation is modeled using the fractional Kelvin-Voigt law. The contact and friction are described by the subdifferential boundary conditions. The variational formulation of this problem leads to a fractional hemivariational inequality. The error estimates for this problem are derived. Finally, here's a second concrete example to illustrate the application. We propose a frictional contact model that incorporates normal compliance and Coulomb friction to describe the quasi-static contact between a viscoelastic body and a solid foundation.
References:
[1] Bai, Y., Migórski, S., Zeng, S.: A class of generalized mixed variational-hemivariational inequalities. I. Existence and uniqueness results. Comput. Math. Appl. 79 (2020), 2897-2911. DOI 10.1016/j.camwa.2019.12.025 | MR 4083028 | Zbl 1445.49014
[2] Baiocchi, C., Capelo, A.: Variational and Quasivariational Inequalities: Applications to Free Boundary Problems. John Wiley & Sons, Chichester (1984). MR 0745619 | Zbl 0551.49007
[3] Baleanu, D., Machado, J. A. T., Luo, A. C. J.: Fractional Dynamics and Control. Springer, New York (2012). DOI 10.1007/978-1-4614-0457-6 | MR 2905887 | Zbl 1231.93003
[4] Bartosz, K., Sofonea, M.: The Rothe method for variational-hemivariational inequalities with applications to contact mechanics. SIAM J. Math. Anal. 48 (2016), 861-883. DOI 10.1137/151005610 | MR 3466201 | Zbl 1342.49009
[5] Benaceur, A., Ern, A., Ehrlacher, V.: A reduced basis method for parametrized variational inequalities applied to contact mechanics. Int. J. Numer. Methods Eng. 121 (2020), 1170-1197. DOI 10.1002/nme.6261 | MR 4072510 | Zbl 07843242
[6] Bonfanti, A., Kaplan, J. L., Charras, G., Kabla, A.: Fractional viscoelastic models for power-law materials. Soft Matter 16 (2020), 6002-6020. DOI 10.1039/D0SM00354A
[7] Bouallala, M., Essoufi, El-H.: A thermo-viscoelastic fractional contact problem with normal compliance and Coulomb's friction. J. Math. Phys. Anal. Geom. 17 (2021), 280-294. DOI 10.15407/mag17.03.280 | MR 4345635 | Zbl 1501.74056
[8] Bouallala, M., Essoufi, El-H., Nguyen, V. T., Pang, W.: A time-fractional of a viscoelastic frictionless contact problem with normal compliance. Eur. Phys. J. Spec. Topics 232 (2023), 2549-2558. DOI 10.1140/epjs/s11734-023-00962-x
[9] Brézis, H.: Equations et inéquations non linéaires dans les espaces vectoriels en dualité. Ann. Inst. Fourier 18 (1968), 115-175 French. DOI 10.5802/aif.280 | MR 0270222 | Zbl 0169.18602
[10] Carstensen, C., Gwinner, J.: A theory of discretization for nonlinear evolution inequalities applied to parabolic Signorini problems. Ann. Mat. Pura Appl., IV. Ser. 177 (1999), 363-394. DOI 10.1007/BF02505918 | MR 1747640 | Zbl 0954.65052
[11] Cen, J., Liu, Y., Nguen, V. T., Zeng, S.: Existence of solutions for fractional evolution inclusion with application to mechanical contact problems. Fractals 29 (2021), Article ID 2140036, 14 pages. DOI 10.1142/S0218348X21400363 | Zbl 1512.34109
[12] Clarke, F. H.: Optimization and Nonsmooth Analysis. Classics in Applied Mathematics 5. SIAM, Philadelphia (1990). DOI 10.1137/1.9781611971309 | MR 1058436 | Zbl 0696.49002
[13] Denkowski, Z., Migórski, S., Papageorgiou, N. S.: An Introduction to Nonlinear Analysis: Applications. Kluwer Academic, Dordrecht (2003). DOI 10.1007/978-1-4419-9156-0 | MR 2024161 | Zbl 1054.47001
[14] Diethelm, K., Ford, N. J., Freed, A. D.: A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn. 29 (2002), 3-22. DOI 10.1023/A:1016592219341 | MR 1926466 | Zbl 1009.65049
[15] Eck, C., Jarušek, J.: Existence results for the static contact problem with Coulomb friction. Math. Models Methods Appl. Sci. 8 (1998), 445-468. DOI 10.1142/S0218202598000196 | MR 1624879 | Zbl 0907.73052
[16] Han, J., Migórski, S., Zeng, H.: Weak solvability of a fractional viscoelastic frictionless contact problem. Appl. Math. Comput. 303 (2017), 1-18. DOI 10.1016/j.amc.2017.01.009 | MR 3607901 | Zbl 1411.74044
[17] Han, W., Sofonea, M.: Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity. AMS/IP Studies in Advanced Mathematics 30. AMS, Providence (2002). DOI 10.1090/amsip/030 | MR 1935666 | Zbl 1013.74001
[18] Hung, N. V., Tam, V. M.: Error bound analysis of the $D$-gap functions for a class of elliptic variational inequalities with applications to frictional contact mechanics. Z. Angew. Math. Phys. 72 (2021), Article ID 173, 17 pages. DOI 10.1007/s00033-021-01602-x | MR 4300248 | Zbl 1518.47094
[19] Kačur, J.: Method of Rothe in Evolution Equations. Teubner-Texte zur Mathematik 80. B. G. Teubner, Leipzig (1985). MR 0834176 | Zbl 0582.65084
[20] Kilbas, A. A., Srivastava, H. M., Trujillo, J. J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies 204. Elsevier, Amsterdam (2006). DOI 10.1016/s0304-0208(06)x8001-5 | MR 2218073 | Zbl 1092.45003
[21] Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and their Applications. Classics in Applied Mathematics 31. SIAM, Philadelphia (2000). DOI 10.1137/1.9780898719451 | MR 1786735 | Zbl 0988.49003
[22] Koeller, R. C.: Applications of fractional calculus to the theory of viscoelasticity. J. Appl. Mech. 51 (1984), 299-307. DOI 10.1115/1.3167616 | MR 0747787 | Zbl 0544.73052
[23] Li, C., Cai, M.: Theory and Numerical Approximations of Fractional Integrals and Derivatives. Other Titles in Applied Mathematics 163. SIAM, Philadelphia (2020). DOI 10.1137/1.9781611975888 | MR 4030088 | Zbl 1483.65007
[24] Liu, Z., Migórski, S., Ochal, A.: Homogenization of boundary hemivariational inequalities in linear elasticity. J. Math. Anal. Appl. 340 (2008), 1347-1361. DOI 10.1016/j.jmaa.2007.09.050 | MR 2390934 | Zbl 1129.74032
[25] Meerschaert, M. M., Scheffler, H.-P., Tadjeran, C.: Finite difference methods for two-dimensional fractional dispersion equation. J. Comput. Phys. 211 (2006), 249-261. DOI 10.1016/j.jcp.2005.05.017 | MR 2168877 | Zbl 1085.65080
[26] Metzler, R., Klafter, J.: The random walk's guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep. 339 (2000), 1-77. DOI 10.1016/S0370-1573(00)00070-3 | MR 1809268 | Zbl 0984.82032
[27] Migórski, S.: Dynamic hemivariational inequality modeling viscoelastic contact problem with normal damped response and friction. Appl. Anal. 84 (2005), 669-699. DOI 10.1080/00036810500048129 | MR 2152682 | Zbl 1081.74036
[28] Migórski, S., Bai, Y., Zeng, S.: A class of generalized mixed variational-hemivariational inequalities. II. Applications. Nonlinear Anal., Real World Appl. 50 (2019), 633-650. DOI 10.1016/j.nonrwa.2019.06.006 | MR 3974776 | Zbl 1436.35216
[29] Migórski, S., Ochal, A.: A unified approach to dynamic contact problems in viscoelasticity. J. Elasticity 83 (2006), 247-275. DOI 10.1007/s10659-005-9034-0 | MR 2248126 | Zbl 1138.74375
[30] Migórski, S., Ochal, A.: Quasi-static hemivariational inequality via vanishing acceleration approach. SIAM J. Math. Anal. 41 (2009), 1415-1435. DOI 10.1137/080733231 | MR 2540272 | Zbl 1204.35123
[31] Migórski, S., Ochal, A., Sofonea, M.: Weak solvability of a piezoelectric contact problem. Eur. J. Appl. Math. 20 (2009), 145-167. DOI 10.1017/S0956792508007663 | MR 2491121 | Zbl 1157.74030
[32] Migórski, S., Ochal, A., Sofonea, M.: Nonlinear Inclusions and Hemivariational Inequalities: Models and Analysis of Contact Problems. Advances in Mechanics and Mathematics 26. Springer, Berlin (2013). DOI 10.1007/978-1-4614-4232-5 | MR 2976197 | Zbl 1262.49001
[33] Migórski, S., Zeng, S.: Rothe method and numerical analysis for history-dependent hemivariational inequalities with applications to contact mechanics. Numer. Algorithms 82 (2019), 423-450. DOI 10.1007/s11075-019-00667-0 | MR 4003753 | Zbl 1433.65192
[34] Nutting, P. G.: A general stress-strain-time formula. J. Franklin Inst. 235 (1943), 513-524. DOI 10.1016/S0016-0032(43)91483-8
[35] Panagiotopoulos, D. P.: Inequality Problems in Mechanics and Applications: Convex and Nonconvex Energy Functions. Birkhäuser, Boston (1985). DOI 10.1007/978-1-4612-5152-1 | MR 0896909 | Zbl 0579.73014
[36] Patel, V.: A stable class of finite difference scheme for time-fractional partial differential equation. Available at https://www.researchsquare.com/article/rs-1887890/v1 (2022), 19 pages. DOI 10.21203/rs.3.rs-1887890/v1
[37] Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Mathematics in Science and Engineering 198. Academic Press, San Diego (1999). MR 1658022 | Zbl 0924.34008
[38] P. E. Rouse, Jr.: The theory of the linear viscoleastic properties of dilute solutions of coiling polymers. J. Chem. Phys. 21 (1953), 1272-1280. DOI 10.1063/1.1699180
[39] Shen, S., Liu, F., Chen, J., Turner, I., Anh, V.: Numerical techniques for the variable order time fractional diffusion equation. Appl. Math. Comput. 218 (2012), 10861-10870. DOI 10.1016/j.amc.2012.04.047 | MR 2942371 | Zbl 1280.65089
[40] Shillor, M., Sofonea, M., Telega, J. J.: Models and Analysis of Quasistatic Contact: Variational Methods. Lecture Notes in Physics 655. Springer, Berlin (2004). DOI 10.1007/b99799 | Zbl 1069.74001
[41] Sofonea, M., Matei, A.: Mathematical Models in Contact Mechanics. London Mathematical Society Lecture Note Series 398. Cambridge University Press, Cambridge (2012). DOI 10.1017/CBO9781139104166 | Zbl 1255.49002
[42] Weng, Y., Chen, T., Li, X., Huang, N.: Rothe method and numerical analysis for a new class of fractional differential hemivariational inequality with an application. Comput. Math. Appl. 98 (2021), 118-138. DOI 10.1016/j.camwa.2021.07.003 | MR 4292075 | Zbl 1524.49023
[43] Yuan, L., Agrawal, O. P.: A numerical scheme for dynamic systems containing fractional derivatives. J. Vib. Acoust. 124 (2002), 321-324. DOI 10.1115/1.1448322
[44] Zeidler, E.: Nonlinear Functional Analysis and Its Applications. II/A. Linear Monotone Operators. Springer, New York (1990). DOI 10.1007/978-1-4612-0985-0 | MR 1033497 | Zbl 0684.47028
[45] Zeidler, E.: Nonlinear Functional Analysis and Its Applications. II/B. Nonlinear Monotone Operators. Springer, New York (1990). DOI 10.1007/978-1-4612-0985-0 | MR 1033498 | Zbl 0684.47029
[46] Zeng, F., Li, C., Liu, F., Turner, I.: The use of finite difference/element approaches for solving the time-fractional subdiffusion equation. SIAM J. Sci. Comput. 35 (2013), A2976--A3000. DOI 10.1137/130910865 | MR 3143842 | Zbl 1292.65096
[47] Zeng, S., Migórski, S.: Noncoercive hyperbolic variational inequalities with applications to contact mechanics. J. Math. Anal. Appl. 455 (2017), 619-637. DOI 10.1016/j.jmaa.2017.05.072 | MR 3665122 | Zbl 1433.35202
[48] Zeng, S., Migórski, S.: A class of time-fractional hemivariational inequalities with application to frictional contact problem. Commun. Nonlinear Sci. Numer. Simul. 56 (2018), 34-48. DOI 10.1016/j.cnsns.2017.07.016 | MR 3709812 | Zbl 1524.35356
Partner of
EuDML logo