Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
unconstrained optimization; decreasing feature; global convergence; image restoration; conjugate gradient technique
Summary:
The Fletcher-Reeves (FR) method is widely recognized for its drawbacks, such as generating unfavorable directions and taking small steps, which can lead to subsequent poor directions and steps. To address this issue, we propose a modification to the FR method, and then we develop it into the three-term conjugate gradient method in this paper. The suggested methods, named ``HZF'' and ``THZF'', preserve the descent property of the FR method while mitigating the drawbacks. The algorithms incorporate strong Wolfe line search conditions to ensure effective convergence. Through numerical comparisons with other conjugate gradient algorithms, our modified approach demonstrates superior performance. The results highlight the improved efficacy of the HZF algorithm compared to the FR and three-term FR conjugate gradient methods. The new algorithm was applied to the problem of image restoration and proved to be highly effective in image restoration compared to other algorithms.
References:
[1] Abdullah, Z. M., Khudhur, H. M., Ahmed, A. Khairulla: Modification of the new conjugate gradient algorithm to solve nonlinear fuzzy equations. Indones. J. Electr. Eng. Comput. Sci. 27 (2022), 1525-1532. DOI 10.11591/ijeecs.v27.i3.pp1525-1532
[2] Abed, M. M., Öztürk, U., Khudhur, H.: Spectral CG algorithm for solving fuzzy non-linear equations. Iraqi J. Comput. Sci. Math. 3 (2022), 1-10. DOI 10.52866/ijcsm.2022.01.01.001
[3] Ahmed, A. S., Khudhur, H. M., Najmuldeen, M. S.: A new parameter in three-term conjugate gradient algorithms for unconstrained optimization. Indones. J. Electr. Eng. Comput. Sci. 23 (2021), 338-344. DOI 10.11591/ijeecs.v23.i1.pp338-344
[4] Aji, S., Kumam, P., Siricharoen, P., Abubakar, A. B., Yahaya, M. M.: A modified conjugate descent projection method for monotone nonlinear equations and image restoration. IEEE Access 8 (2020), 158656-158665. DOI 10.1109/ACCESS.2020.3020334
[5] Al-Baali, M.: Descent property and global convergence of the Fletcher-Reeves method with inexact line search. IMA J. Numer. Anal. 5 (1985), 121-124. DOI 10.1093/imanum/5.1.121 | MR 0777963 | Zbl 0578.65063
[6] Andrei, N.: Conjugate gradient algorithms for molecular formation under pairwise potential minimization. Proceedings of the Fifth Workshop on Mathematical Modelling of Environmental and Life Sciences Problems Editura Academiei Române, Bucureşti (2006), 7-26.
[7] Andrei, N.: Nonlinear Conjugate Gradient Methods for Unconstrained Optimization. Springer Optimization and Its Applications 158. Springer, Cham (2020),\99999DOI99999 10.1007/978-3-030-42950-8 \centerline{\epsfbox{Fig3.eps}} \caption{Lena image. (In the second row are desplayed original images with percentage of salt-and-pepper noise.)} \centerline{\epsfbox{Fig4.eps}} \caption{Monkey image. (In the second row are desplayed original images with percentage of salt-and-pepper noise.)} \centerline{\epsfbox{Fig5.eps}} \caption{Woman image. (In the second row are desplayed original images with percentage of salt-and-pepper noise.)}. MR 4179461 | Zbl 1514.90250
[8] Cai, J.-F., Chan, R. H., Morini, B.: Minimization of an edge-preserving regularization functional by conjugate gradient type methods. Image Processing Based on Partial Differential Equations Springer, Berlin (2007), 109-122. DOI 10.1007/978-3-540-33267-1_7 | MR 2424224
[9] Dai, Y.-H., Liao, L.-Z.: New conjugacy conditions and related nonlinear conjugate gradient methods. Appl. Math. Optim. 43 (2001), 87-101. DOI 10.1007/s002450010019 | MR 1804396 | Zbl 0973.65050
[10] Dai, Y. H., Yuan, Y.: A nonlinear conjugate gradient method with a strong global convergence property. SIAM J. Optim. 10 (1999), 177-182. DOI 10.1137/S1052623497318992 | MR 1740963 | Zbl 0957.65061
[11] Dolan, E. D., Moré, J. J.: Benchmarking optimization software with performance profiles. Math. Program. 91 (2002), 201-213. DOI 10.1007/s101070100263 | MR 1875515 | Zbl 1049.90004
[12] Fletcher, R., Reeves, C. M.: Function minimization by conjugate gradients. Comput. J. 7 (1964), 149-154. DOI 10.1093/comjnl/7.2.149 | MR 0187375 | Zbl 0132.11701
[13] Garreau, G. A.: Numerical methods for unconstrained optimization: an introduction, by M. A. Wolfe. Math. Gaz. 65 (1981), 234-235. DOI 10.2307/3617168 | MR 0565858
[14] Gilbert, J. C., Nocedal, J.: Global convergence properties of conjugate gradient methods for optimization. SIAM J. Optim. 2 (1992), 21-42. DOI 10.1137/0802003 | MR 1147881 | Zbl 0767.90082
[15] Hager, W. W., Zhang, H.: A new conjugate gradient method with guaranteed descent and an efficient line search. SIAM J. Optim. 16 (2005), 170-192. DOI 10.1137/03060188 | MR 2177774 | Zbl 1093.90085
[16] Hager, W. W., Zhang, H.: A survey of nonlinear conjugate gradient methods. Pac. J. Optim. 2 (2006), 35-58. MR 2548208 | Zbl 1117.90048
[17] Halil, I. H., Abbo, K. K., Ebrahim, H. H.: Modifications of Hestenes and Stiefel CG method for solving unconstrained optimization problems. 7th International Conference on Contemporary Information Technology and Mathematics (ICCITM) IEEE, Philadelphia (2021), 274-278. DOI 10.1109/ICCITM53167.2021.9677756
[18] Hestenes, M. R., Stiefel, E.: Methods of conjugate gradients for solving linear systems. J. Res. Natl. Bur. Stand. 49 (1952), 409-436. DOI 10.6028/jres.049.044 | MR 0060307 | Zbl 0048.09901
[19] Ibrahim, Y. I., Khudhur, H. M.: Modified three-term conjugate gradient algorithm and its applications in image restoration. Indones. J. Electr. Eng. Comput. Sci. 28 (2022), 1510-1517. DOI 10.11591/ijeecs.v28.i3.pp1510-1517
[20] Khudhur, H. M., Abbo, K. K.: A new type of conjugate gradient technique for solving fuzzy nonlinear algebraic equations. J. Phys., Conf. Ser. 1879 (2021), Article ID 022111, 9 pages. DOI 10.1088/1742-6596/1879/2/022111
[21] Khudhur, H. M., Fawze, A. A. M.: An improved conjugate gradient method for solving unconstrained optimisation and image restoration problems. Int. J. Math. Model. Numer. Optim. 13 (2023), 313-325. DOI 10.1504/IJMMNO.2023.132286
[22] Khudhur, H. M., Hassan, B. A., Aji, S.: Superior formula for gradient impulse noise reduction from images. Int. J. Appl. Comput. Math. 10 (2024), Article ID 4, 12 pages. DOI 10.1007/s40819-023-01637-w | MR 4675158
[23] Lai, K. K., Mishra, S. K., Panda, G., Ansary, M. A. T., Ram, B.: On $q$-steepest descent method for unconstrained multiobjective optimization problems. AIMS Math. 5 (2020), 5521-5540. DOI 10.3934/math.2020354 | MR 4148898 | Zbl 1484.90101
[24] Lai, K. K., Mishra, S. K., Ram, B.: A $q$-conjugate gradient algorithm for unconstrained optimization problems. Pac. J. Optim. 17 (2021), 57-76. MR 4228060 | Zbl 1462.90127
[25] Lai, K. K., Mishra, S. K., Sharma, R., Sharma, M., Ram, B.: A modified $q$-BFGS algorithm for unconstrained optimization. Mathematics 11 (2023), Article ID 1420, 24 pages. DOI 10.3390/math11061420
[26] Laylani, Y., Hassan, B. A., Khudhur, H. M.: A new class of optimization methods based on coefficient conjugate gradient. Eur. J. Pure Appl. Math. 15 (2022), 1908-1916. DOI 10.29020/nybg.ejpam.v15i4.4575
[27] Laylani, Y. A., Hassan, B. A., Khudhur, H. M.: Enhanced spectral conjugate gradient methods for unconstrained optimization. Int. J. Math. Comput. Sci. 18 (2023), 163-172. MR 4539256 | Zbl 1524.90293
[28] Liu, Y., Storey, C.: Efficient generalized conjugate gradient algorithms. I. Theory. J. Optim. Theory Appl. 69 (1991), 129-137. DOI 10.1007/BF00940464 | MR 1104590 | Zbl 0702.90077
[29] Mishra, S. K., Panda, G., Ansary, M. A. T., Ram, B.: On $q$-Newton's method for unconstrained multiobjective optimization problems. J. Appl. Math. Comput. 63 (2020), 391-410. DOI 10.1007/s12190-020-01322-x | MR 4100985 | Zbl 1475.90095
[30] Mishra, S. K., Panda, G., Chakraborty, S. K., Samei, M. E., Ram, B.: On $q$-BFGS algorithm for unconstrained optimization problems. Adv. Difference Equ. 2020 (2020), Article ID 638, 23 pages. DOI 10.1186/s13662-020-03100-2 | MR 4175483 | Zbl 1487.65067
[31] Mzili, T., Mzili, I., Riffi, M. E., Kurdi, M., Ali, A. H., Pamucar, D., Abualigah, L.: Enhancing COVID-19 vaccination and medication distribution routing strategies in rural regions of Morocco: A comparative metaheuristics analysis. Inf. Medicine Unlocked 46 (2024), Article ID 101467, 13 pages. DOI 10.1016/j.imu.2024.101467
[32] Mzili, T., Mzili, I., Riffi, M. E., Pamucar, D., Kurdi, M., Ali, A. H.: Optimizing production scheduling with the spotted hyena algorithm: A novel approach to the flow shop problem. Rep. Mech. Engin. 4 (2023), 90-103. DOI 10.31181/rme040116072023m
[33] Nocedal, J., Wright, S. J.: Numerical Optimization. Springer Series in Operations Research and Financial Engineering. Springer, New York (2006). DOI 10.1007/978-0-387-40065-5 | MR 2244940 | Zbl 1104.65059
[34] Polak, E., Ribière, G.: Note sur la convergence de méthodes de directions conjuguées. Rev. Franç. Inform. Rech. Opér. 3 (1969), 35-43 French. DOI 10.1051/m2an/196903r100351 | MR 0255025 | Zbl 0174.48001
[35] Powell, M. J. D.: Nonconvex minimization calculations and the conjugate gradient method. Numerical Analysis Lecture Notes in Mathematics 1066. Springer, Berlin (1984), 122-141. DOI 10.1007/BFb0099521 | MR 0760460 | Zbl 0531.65035
[36] Rasheed, M., Ali, A. H., Alabdali, O., Shihab, S., Rashid, A., Rashid, T., Hamad, S. H. A.: The effectiveness of the finite differences method on physical and medical images based on a heat diffusion equation. J. Phys., Conf. Ser. 1999 (2021), Article ID 012080, 14 pages. DOI 10.1088/1742-6596/1999/1/012080
[37] Samei, M. E., Ahmadi, A., Hajiseyedazizi, S. N., Mishra, S. K., Ram, B.: The existence of nonnegative solutions for a nonlinear fractional $q$-differential problem via a different numerical approach. J. Inequal. Appl. 2021 (2021), Article ID 75, 33 pages. DOI 10.1186/s13660-021-02612-z | MR 4248658 | Zbl 1504.34013
[38] Souli, C., Ziadi, R., Bencherif-Madani, A., Khudhur, H. M.: A hybrid CG algorithm for nonlinear unconstrained optimization with application in image restoration. J. Math. Model. 12 (2024), 301-317. DOI 10.22124/JMM.2024.26151.2317 | MR 4777343
[39] Sun, W., Yuan, Y.-X.: Optimization Theory and Methods: Nonlinear Programming. Springer Optimization and Its Applications 1. Springer, New York (2006). DOI 10.1007/b106451 | MR 2232297 | Zbl 1129.90002
[40] Toumi, T., Raymond, P.: Upwind numerical scheme for a two-fluid two-phase flow model. 14th International Conference on Numerical Methods in Fluid Dynamics Lecture Notes in Physics 453. Springer, Berlin (1995), 299-306. Zbl 0862.76053
[41] Witzgall, C.: Practical methods of optimization by R. Fletcher. Math. Comput. 53 (1989), 768-769. DOI 10.2307/2008742 | MR 0955799
[42] Zhang, L., Zhou, W., Li, D.: Some descent three-term conjugate gradient methods and their global convergence. Optim. Methods Softw. 22 (2007), 697-711. DOI 10.1080/10556780701223293 | MR 2321616 | Zbl 1220.90094
[43] Zoutendijk, G.: Nonlinear programming, computational methods. Integer and Nonlinear Programming North-Holland, Amsterdam (1970), 37-86. MR 0437081 | Zbl 0336.90057
Partner of
EuDML logo