[2] Antonelli, P., Michelangeli, A., Scandone, R.:
Global, finite energy, weak solutions for the NLS with rough, time-dependent magnetic potentials. Z. Angew. Math. Phys. 69 (2018), Article ID 46, 30 pages.
DOI 10.1007/s00033-018-0938-5 |
MR 3778934 |
Zbl 1392.35278
[3] Aoki, K., Guimard, D., Nishioka, M., Nomura, M., Iwamoto, S., Arakawa, Y.:
Coupling of quantum-dot light emission with a three-dimensional photonic-crystal nanocavity. Nature Photonics 2 (2008), 688-692.
DOI 10.1038/nphoton.2008.202
[5] Bao, W., Cai, Y.:
Uniform error estimates of finite difference methods for the nonlinear Schrödinger equation with wave operator. SIAM J. Numer. Anal. 50 (2012), 492-521.
DOI 10.1137/11083080 |
MR 2914273 |
Zbl 1246.35188
[14] Lourenço-Martins, H.:
A brief introduction to nano-optics with fast electrons. Plasmon Coupling Physics Advances in Imaging and Electron Physics 222. Elsevier, Amsterdam (2022), 1-82.
DOI 10.1016/bs.aiep.2022.05.001
[19] Scandone, R.:
Global solutions to the nonlinear Maxwell-Schrödinger system. Harmonic Analysis and Partial Differential Equations Trends in Mathematics. Birkhäuser, Cham (2022), 91-96.
DOI 10.1007/978-3-031-24311-0_6 |
MR 4696593
[24] Shukla, P. K., Eliasson, B.:
Colloquium: Nonlinear collective interactions in quantum plasmas with degenerate electron fluids. Rev. Mod. Phys. 83 (2011), 885-906.
DOI 10.1103/RevModPhys.83.885
[25] M. Sugawara, N. Hatori, M. Ishida, H. Ebe, Y. Arakawa, T. Akiyama, K. Otsubo, T. Yamamoto, Y. Nakata:
Recent progress in self-assembled quantum-dot optical devices for optical telecommunication: Temperature-insensitive 10 Gb s$^{-1}$ directly modulated lasers and 40 Gb s$^{-1}$ signal-regenerative amplifiers. J. Phys. D, Appl. Phys. 38 (2005), 2126-2134.
DOI 10.1088/0022-3727/38/13/008
[26] Tsutsumi, Y.:
Global existence and asymptotic behavior of solutions for the Maxwell-Schrödinger equations in three space dimensions. Commun. Math. Phys. 151 (1993), 543-576.
DOI 10.1007/BF02097027 |
MR 1207265 |
Zbl 0766.35061
[28] Tsutsumi, M., Nakamitsu, K.:
Global existence of solutions to the Cauchy problem for coupled Maxwell-Schrödinger equations in two space dimensions. Physical Mathematics and Nonlinear Partial Differential Equations Lecture Notes in Pure and Applied Mathematics 102. Marcel Dekker, New York (1985), 139-155.
DOI 10.1201/9781003072683 |
MR 0826831 |
Zbl 0575.35061