[3] Asadzadeh, M., Beilina, L.:
Stability and convergence analysis of a domain decomposition FE/FD method for Maxwell's equations in the time domain. Algorithms 15 (2022), Article ID 337, 22 pages.
DOI 10.3390/a15100337
[5] Assous, F., Degond, P., Heinze, E., Raviart, P. A., Segre, J.:
On finite-element method for solving the three-dimensional Maxwell equations. J. Comput. Phys. 109 (1993), 222-237.
DOI 10.1006/jcph.1993.1214 |
MR 1253460 |
Zbl 0795.65087
[6] Balay, S., Gropp, W. D., McInnes, L. C., Smith, B. F.:
PETSc: The Portable, Extensible Toolkit for Scientific Computation. Available at
http://www.mcs.anl.gov/petsc/
[8] Beilina, L.:
Energy estimates and numerical verification of the stabilized domain decomposition finite element/finite difference approach for time-dependent Maxwell's system. Cent. Eur. J. Math. 11 (2013), 702-733.
DOI 10.2478/s11533-013-0202-3 |
MR 3015394 |
Zbl 1267.78044
[11] Beilina, L., Lindström, E.:
An adaptive finite element/finite difference domain decomposition method for applications in microwave imaging. Electronics 11 (2022), Article ID 1359, 33 pages.
DOI 10.3390/electronics11091359
[12] Beilina, L., Lindström, E.:
A posteriori error estimates and adaptive error control for permittivity reconstruction in conductive media. Gas Dynamics with Applications in Industry and Life Sciences Springer Proceedings in Mathematics & Statistics 429. Springer, Cham (2023), 117-141.
DOI 10.1007/978-3-031-35871-5_7 |
MR 4696623
[22] Eriksson, K., Estep, D., Hansbo, P., Johnson, C.:
Computational Differential Equations. Cambridge University Press, Cambridge (1996).
MR 1414897 |
Zbl 0946.65049
[26] Jamelot, E.:
Résolution des équations de Maxwell avec des éléments finis de Galerkin continus: PhD Thesis. L'Ecole Polytechnique, Paris (2005), French.
Zbl 1185.65006
[29] Jin, J.-M.:
The Finite Element Method in Electromagnetics. John Wiley, New York (1993).
MR 1903357 |
Zbl 0823.65124
[30] Johnson, C.:
Numerical Solutions of Partial Differential Equations by the Finite Element Method. Cambridge University Press, Cambridge (1987).
MR 0925005 |
Zbl 0628.65098
[31] Joly, P.:
Variational methods for time-dependent wave propagation problems. Topics in Computational Wave Propagation Lecture Notes in Computational Science and Engineering 31. Springer, Berlin (2003), 201-264.
DOI 10.1007/978-3-642-55483-4_6 |
MR 2032871 |
Zbl 1049.78028
[32] Křížek, M., Neittaanmäki, P.:
Finite Element Approximation of Variational Problems and Applications. Pitman Monographs and Surveys in Pure and Applied Mathematics 50. Longman, Harlow (1990).
MR 1066462 |
Zbl 0708.65106
[34] Lazebnik, M., al., et:
A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries. Phys. Med. Biol. 52 (2007), Article ID 6093, 20 pages.
DOI 10.1088/0031-9155/52/20/002
[35] Malmberg, J. B., Beilina, L.:
An adaptive finite element method in quantitative reconstruction of small inclusions from limited observations. Appl. Math. Inf. Sci. 12 (2018), 1-19.
DOI 10.18576/amis/120101 |
MR 3747879
[38] Munz, C.-D., Omnes, P., Schneider, R., Sonnendrücker, E., Voss, U.:
Divergence correction techniques for Maxwell solvers based on a hyperbolic model. J. Comput. Phys. 161 (2000), 484-511.
DOI 10.1006/jcph.2000.6507 |
MR 1764247 |
Zbl 0970.78010
[40] Paulsen, K. D., Lynch, D. R.:
Elimination of vector parasites in finite element Maxwell solutions. IEEE Trans. Microw. Theory Tech. 39 (1991), 395-404.
DOI 10.1109/22.75280
[41] Thành, N. T., Beilina, L., Klibanov, M. V., Fiddy, M. A.:
Reconstruction of the refractive index from experimental backscattering data using a globally convergent inverse method. SIAM J. Sci. Comput. 36 (2014), B273--B293.
DOI 10.1137/130924962 |
MR 3199422 |
Zbl 1410.78018
[42] Thành, N. T., Beilina, L., Klibanov, M. V., Fiddy, M. A.:
Imaging of buried objects from experimental backscattering time-dependent measurements using a globally convergent inverse algorithm. SIAM J. Imaging Sci. 8 (2015), 757-786.
DOI 10.1137/140972469 |
MR 3327354 |
Zbl 1432.35259