Previous |  Up |  Next

Article

Title: Energy norm error estimates and convergence analysis for a stabilized Maxwell's equations in conductive media (English)
Author: Lindström, Eric
Author: Beilina, Larisa
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 69
Issue: 4
Year: 2024
Pages: 415-436
Summary lang: English
.
Category: math
.
Summary: The aim of this article is to investigate the well-posedness, stability of solutions to the time-dependent Maxwell's equations for electric field in conductive media in continuous and discrete settings, and study convergence analysis of the employed numerical scheme. The situation we consider would represent a physical problem where a subdomain is emerged in a homogeneous medium, characterized by constant dielectric permittivity and conductivity functions. It is well known that in these homogeneous regions the solution to the Maxwell's equations also solves the wave equation, which makes computations very efficient. In this way our problem can be considered as a coupling problem, for which we derive stability and convergence analysis. A number of numerical examples validate theoretical convergence rates of the proposed stabilized explicit finite element scheme. (English)
Keyword: Maxwell's equation
Keyword: finite element method
Keyword: stability
Keyword: a priori error analysis
Keyword: energy error estimate
Keyword: convergence analysis
MSC: 35Q61
MSC: 65N15
MSC: 65N21
MSC: 65N30
idZBL: Zbl 07953646
idMR: MR4785691
DOI: 10.21136/AM.2024.0248-23
.
Date available: 2024-08-27T11:15:14Z
Last updated: 2024-12-13
Stable URL: http://hdl.handle.net/10338.dmlcz/152526
.
Reference: [1] Arnold, D. N., Brezzi, F., Cockburn, B., Marini, L. D.: Unified analysis for discontinuous Galerkin methods for elliptic problems.SIAM J. Numer. Anal. 39 (2022), 1749-1779. Zbl 1008.65080, MR 1885715, 10.1137/S0036142901384162
Reference: [2] Asadzadeh, M.: An Introduction to Finite Element Methods for Differential Equations.John Wiley & Sons, Hoboken (2021). Zbl 1446.65001, 10.1002/9781119671688
Reference: [3] Asadzadeh, M., Beilina, L.: Stability and convergence analysis of a domain decomposition FE/FD method for Maxwell's equations in the time domain.Algorithms 15 (2022), Article ID 337, 22 pages. 10.3390/a15100337
Reference: [4] Asadzadeh, M., Beilina, L.: A stabilized $P1$ domain decomposition finite element method for time harmonic Maxwell's equations.Math. Comput. Simul. 204 (2023), 556-574. Zbl 07619073, MR 4484360, 10.1016/j.matcom.2022.08.013
Reference: [5] Assous, F., Degond, P., Heinze, E., Raviart, P. A., Segre, J.: On finite-element method for solving the three-dimensional Maxwell equations.J. Comput. Phys. 109 (1993), 222-237. Zbl 0795.65087, MR 1253460, 10.1006/jcph.1993.1214
Reference: [6] Balay, S., Gropp, W. D., McInnes, L. C., Smith, B. F.: PETSc: The Portable, Extensible Toolkit for Scientific Computation.Available at http://www.mcs.anl.gov/petsc/.
Reference: [7] Baudouin, L., Buhan, M. de, Ervedoza, S., Osses, A.: Carleman-based reconstruction algorithm for the waves.SIAM J. Numer. Anal. 59 (2021), 998-1039. Zbl 1461.93213, MR 4244540, 10.1137/20M1315798
Reference: [8] Beilina, L.: Energy estimates and numerical verification of the stabilized domain decomposition finite element/finite difference approach for time-dependent Maxwell's system.Cent. Eur. J. Math. 11 (2013), 702-733. Zbl 1267.78044, MR 3015394, 10.2478/s11533-013-0202-3
Reference: [9] Beilina, L.: WavES: Wave Equations Solutions.Available at http://www.waves24.com/ (2017).
Reference: [10] Beilina, L., Klibanov, M. V.: Approximate Global Convergence and Adaptivity for Coefficient Inverse Problems.Springer, New York (2012). Zbl 1255.65168, 10.1007/978-1-4419-7805-9
Reference: [11] Beilina, L., Lindström, E.: An adaptive finite element/finite difference domain decomposition method for applications in microwave imaging.Electronics 11 (2022), Article ID 1359, 33 pages. 10.3390/electronics11091359
Reference: [12] Beilina, L., Lindström, E.: A posteriori error estimates and adaptive error control for permittivity reconstruction in conductive media.Gas Dynamics with Applications in Industry and Life Sciences Springer Proceedings in Mathematics & Statistics 429. Springer, Cham (2023), 117-141. MR 4696623, 10.1007/978-3-031-35871-5_7
Reference: [13] Beilina, L., Ruas, V.: An explicit P1 finite element scheme for Maxwell's equations with constant permittivity in a boundary neighborhood.Available at https://arxiv.org/abs/1808.10720 (2018), 38 pages. 10.48550/arXiv.1808.10720
Reference: [14] Dhia, A.-S. Bonnet-Ben, Hazard, C., Lohrengel, S.: A singular field method for the solution of Maxwell's equations in polyhedral domains.SIAM J. Appl. Math. 59 (1999), 2028-2044. Zbl 0933.78007, MR 1709795, 10.1137/S00361399973233
Reference: [15] Brenner, S. C., Scott, L. R.: The Mathematical Theory of Finite Element Methods.Texts in Applied Mathematics 15. Springer, New York (1994). Zbl 0804.65101, MR 1278258, 10.1007/978-1-4757-4338-8
Reference: [16] P. Ciarlet, Jr.: Augmented formulations for solving Maxwell equations.Comput. Methods Appl. Mech. Eng. 194 (2005), 559-586. Zbl 1063.78018, MR 2105182, 10.1016/j.cma.2004.05.021
Reference: [17] P. Ciarlet, Jr., E. Jamelot: Continuous Galerkin methods for solving the time-dependent Maxwell equations in 3D geometries.J. Comput. Phys. 226 (2007), 1122-1135. Zbl 1128.78002, MR 2356870, 10.1016/j.jcp.2007.05.029
Reference: [18] Cohen, G. C.: Higher-Order Numerical Methods for Transient Wave Equations.Scientific Computation. Springer, Berlin (2002). Zbl 0985.65096, MR 1870851, 10.1007/978-3-662-04823-8
Reference: [19] Costabel, M., Dauge, M.: Singularities of electromagnetic fields in polyhedral domains.Arch. Ration. Mech. Anal. 151 (2000), 221-276. Zbl 0968.35113, MR 1753704, 10.1007/s002050050197
Reference: [20] Costabel, M., Dauge, M.: Weighted regularization of Maxwell equations in polyhedral domains: A rehabilitation of nodal finite elements.Numer. Math. 93 (2002), 239-277. Zbl 1019.78009, MR 1941397, 10.1007/s002110100388
Reference: [21] Elmkies, A., Joly, P.: Edge finite elements and mass lumping for Maxwell's equations: The 2D case.C. R. Acad. Sci., Paris, Sér. I 324 (1997), 1287-1293 French. Zbl 0877.65081, MR 1456303, 10.1016/S0764-4442(99)80415-7
Reference: [22] Eriksson, K., Estep, D., Hansbo, P., Johnson, C.: Computational Differential Equations.Cambridge University Press, Cambridge (1996). Zbl 0946.65049, MR 1414897
Reference: [23] Ern, A., Guermond, J.-L.: Analysis of the edge finite element approximation of the Maxwell equations with low regularity solutions.Comput. Math. Appl. 75 (2018), 918-932. Zbl 1409.65068, MR 3766493, 10.1016/j.camwa.2017.10.017
Reference: [24] Evans, L. C.: Partial Differential Equations.Graduate Studies in Mathematics 19. AMS, Providence (1998). Zbl 0902.35002, MR 1625845, 10.1090/gsm/019
Reference: [25] Gleichmann, Y. G., Grote, M. J.: Adaptive spectral inversion for inverse medium problems.Inverse Probl. 39 (2023), Article ID 125007, 27 pages. Zbl 07765707, MR 4664072, 10.1088/1361-6420/ad01d4
Reference: [26] Jamelot, E.: Résolution des équations de Maxwell avec des éléments finis de Galerkin continus: PhD Thesis.L'Ecole Polytechnique, Paris (2005), French. Zbl 1185.65006
Reference: [27] Jiang, B.-n.: The Least-Squares Finite Element Method: Theory and Applications in Computational Fluid Dynamics and Electromagnetics.Scientific Computation. Springer, Berlin (1998). Zbl 0904.76003, MR 1639101, 10.1007/978-3-662-03740-9
Reference: [28] Jiang, B.-n., Wu, J., Povinelli, L. A.: The origin of spurious solutions in computational electromagnetics.J. Comput. Phys. 125 (1996), 104-123. Zbl 0848.65086, MR 1381806, 10.1006/jcph.1996.0082
Reference: [29] Jin, J.-M.: The Finite Element Method in Electromagnetics.John Wiley, New York (1993). Zbl 0823.65124, MR 1903357
Reference: [30] Johnson, C.: Numerical Solutions of Partial Differential Equations by the Finite Element Method.Cambridge University Press, Cambridge (1987). Zbl 0628.65098, MR 0925005
Reference: [31] Joly, P.: Variational methods for time-dependent wave propagation problems.Topics in Computational Wave Propagation Lecture Notes in Computational Science and Engineering 31. Springer, Berlin (2003), 201-264. Zbl 1049.78028, MR 2032871, 10.1007/978-3-642-55483-4_6
Reference: [32] Křížek, M., Neittaanmäki, P.: Finite Element Approximation of Variational Problems and Applications.Pitman Monographs and Surveys in Pure and Applied Mathematics 50. Longman, Harlow (1990). Zbl 0708.65106, MR 1066462
Reference: [33] Křížek, M., Neittaanmäki, P.: Mathematical and Numerical Modelling in Electrical Engineering: Theory and Applications.Kluwer Academic, Dordrecht (1996). Zbl 0859.65128, MR 1431889, 10.1007/978-94-015-8672-6
Reference: [34] Lazebnik, M., al., et: A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries.Phys. Med. Biol. 52 (2007), Article ID 6093, 20 pages. 10.1088/0031-9155/52/20/002
Reference: [35] Malmberg, J. B., Beilina, L.: An adaptive finite element method in quantitative reconstruction of small inclusions from limited observations.Appl. Math. Inf. Sci. 12 (2018), 1-19. MR 3747879, 10.18576/amis/120101
Reference: [36] Monk, P.: Finite Element Methods for Maxwell's Equations.Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford (2003). Zbl 1024.78009, MR 2059447, 10.1093/acprof:oso/9780198508885.001.0001
Reference: [37] Monk, P. B., Parrott, A. K.: A dispersion analysis of finite element methods for Maxwell's equations.SIAM J. Sci. Comput. 15 (1994), 916-937. Zbl 0804.65122, MR 1278007, 10.1137/0915055
Reference: [38] Munz, C.-D., Omnes, P., Schneider, R., Sonnendrücker, E., Voss, U.: Divergence correction techniques for Maxwell solvers based on a hyperbolic model.J. Comput. Phys. 161 (2000), 484-511. Zbl 0970.78010, MR 1764247, 10.1006/jcph.2000.6507
Reference: [39] Nedelec, J.-C.: Mixed finite elements in $\Bbb R^3$.Numer. Math. 35 (1980), 315-341. Zbl 0419.65069, MR 0592160, 10.1007/BF01396415
Reference: [40] Paulsen, K. D., Lynch, D. R.: Elimination of vector parasites in finite element Maxwell solutions.IEEE Trans. Microw. Theory Tech. 39 (1991), 395-404. 10.1109/22.75280
Reference: [41] Thành, N. T., Beilina, L., Klibanov, M. V., Fiddy, M. A.: Reconstruction of the refractive index from experimental backscattering data using a globally convergent inverse method.SIAM J. Sci. Comput. 36 (2014), B273--B293. Zbl 1410.78018, MR 3199422, 10.1137/130924962
Reference: [42] Thành, N. T., Beilina, L., Klibanov, M. V., Fiddy, M. A.: Imaging of buried objects from experimental backscattering time-dependent measurements using a globally convergent inverse algorithm.SIAM J. Imaging Sci. 8 (2015), 757-786. Zbl 1432.35259, MR 3327354, 10.1137/140972469
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo