[1] Agresti, A.:
Foundations of Linear and Generalized Linear Models. Wiley Series in Probability and Statistics. John Wiley & Sons, Hoboken (2015).
MR 3308143 |
Zbl 1309.62001
[2] Blokdyk, G.: Artificial Neural Network: A Complete Guide. 5STARCooks, Toronto (2021).
[3] Carroll, R. J., Ruppert, D., Stefanski, L. A., Crainiceanu, C. M.:
Measurement Error in Nonlinear Models: A Modern Perspective. Monographs on Statistics and Applied Probability 105. Chapman & Hall/CRC, Boca Raton (2006).
DOI 10.1201/9781420010138 |
MR 2243417 |
Zbl 1119.62063
[4] Croci, M., Fasi, M., Higham, N. J., Mary, T., Mikaitis, M.:
Stochastic rounding: Implementation, error analysis and applications. R. Soc. Open Sci. 9 (2022), Article ID 211631, 25 pages.
DOI 10.1098/rsos.211631
[5] Egrioglu, E., Bas, E., Karahasan, O.:
Winsorized dendritic neuron model artificial neural network and a robust training algorithm with Tukey's biweight loss function based on particle swarm optimization. Granul. Comput. 8 (2023), 491-501.
DOI 10.1007/s41066-022-00345-y
[6] Fasi, M., Higham, N. J., Mikaitis, M., Pranesh, S.:
Numerical behavior of NVIDIA tensor cores. PeerJ Computer Sci. 7 (2021), Article ID e330, 19 pages.
DOI 10.7717/peerj-cs.330
[7] Gao, F., Li, B., Chen, L., Shang, Z., Wei, X., He, C.:
A softmax classifier for high-precision classification of ultrasonic similar signals. Ultrasonics 112 (2021), Article ID 106344, 8 pages.
DOI 10.1016/j.ultras.2020.106344
[8] Greene, W. H.: Econometric Analysis. Pearson Education, Harlow (2018).
[9] Hastie, T., Tibshirani, R., Wainwright, R.:
Statistical Learning with Sparsity: The Lasso and Generalizations. Monographs on Statistics and Applied Probability 143. CRC Press, Boca Raton (2015).
DOI 10.1201/b18401 |
MR 3616141 |
Zbl 1319.68003
[10] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.:
Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22 (2021), Article ID 241, 124 pages.
MR 4329820 |
Zbl 07626756
[11] Kalina, J., Tichavský, J.:
On robust estimation of error variance in (highly) robust regression. Measurement Sci. Rev. 20 (2020), 6-14.
DOI 10.2478/msr-2020-0002
[12] Kalina, J., Vidnerová, P., Soukup, L.:
Modern approaches to statistical estimation of measurements in the location model and regression. Handbook of Metrology and Applications Springer, Singapore (2023), 2355-2376.
DOI 10.1007/978-981-99-2074-7_125
[13] Louizos, C., Reisser, M., Blankevoort, T., Gavves, E., Welling, M.:
Relaxed quantization for discretized neural networks. Available at
https://arxiv.org/abs/1810.01875 (2018), 14 pages.
DOI 10.48550/arXiv.1810.01875
[14] Maddox, W. J., Potapczynski, A., Wilson, A. G.: Low-precision arithmetic for fast Gaussian processes. Proc. Mach. Learn. Res. 180 (2022), 1306-1316.
[15] Nagel, M., Fournarakis, M., Amjad, R. A., Bondarenko, Y., Baalen, M. van, Blankevoort, T.:
A white paper on neural network quantization. Available at
https://arxiv.org/abs/2106.08295 (2021), 27 pages.
DOI 10.48550/arXiv.2106.08295
[16] Park, J.-H., Kim, K.-M., Lee, S.:
Quantized sparse training: A unified trainable framework for joint pruning and quantization in DNNs. ACM Trans. Embedded Comput. Syst. 21 (2022), Article ID 60, 22 pages.
DOI 10.1145/3524066
[20] Seghouane, A.-K., Shokouhi, N.:
Adaptive learning for robust radial basis function networks. IEEE Trans. Cybernetics 51 (2021), 2847-2856.
DOI 10.1109/TCYB.2019.2951811
[21] Shultz, K. S., Whitney, D., Zickar, M. J.:
Measurement Theory in Action: Case Studies and Exercises. Routledge, New York (2020).
DOI 10.4324/9781315869834
[22] Šíma, J., Vidnerová, P., Mrázek, V.:
Energy complexity model for convolutional neural networks. Artificial Neural Networks and Machine Learning -- ICANN 2023 Lecture Notes in Computer Science 14263. Springer, Cham (2023), 186-198.
DOI 10.1007/978-3-031-44204-9_16
[25] Víšek, J.Á.:
Consistency of the least weighted squares under heteroscedasticity. Kybernetika 47 (2011), 179-206.
MR 2828572 |
Zbl 1220.62064
[26] Wang, N., Choi, J., Brand, D., Chen, C.-Y., Gopalakrishnan, K.:
Training deep neural networks with 8-bit floating point numbers. NIPS'18: Proceedings of the 32nd International Conference on Neural Information Processing Systems Curran Associates, New York (2018), 7686-7695.
DOI 10.5555/3327757.3327866
[29] Zhang, R., Wilson, A. G., Sa, C. De: Low-precision stochastic gradient Langevin dynamics. Proc. Mach. Learn. Res. 162 (2022), 26624-26644.