Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
hyperbolic system of equations; shock waves, asymptotic expansion
Summary:
The evolutions of small and large compressive pulses are studied in a two-phase flow of gas and dust particles with a variable azimuthal velocity. The method of relatively undistorted waves is used to study the mechanical pulses of different types in a rotational, axisymmetric dusty gas. The results obtained are compared with that of nonrotating medium. Asymptotic expansion procedure is used to discuss the nonlinear theory of geometrical acoustics. The influence of the solid particles and the rotational effect of the medium on the distortion are investigated. In a rotational flow it is observed that with the increase in the value of rotational parameter, the steepening of the pulses also increases. The presence of dust in the rotational flow delays the onset of shock formation thereby increasing the distance where the shock is formed first. The rotational and the dust parameters are observed to have the same effect on the shock strength.
References:
[1] Anand, R. K.: Shock jump relations for a dusty gas atmosphere. Astrophys. Space Sci. 349 (2014), 181-195. DOI 10.1007/s10509-013-1638-4
[2] Chadha, M., Jena, J.: Propagation of weak waves in a dusty, van der Waals gas. Meccanica 51 (2016), 2145-2157 \99999DOI99999 10.1007/s11012-015-0354-2 \goodbreak. DOI 10.1007/s11012-015-0354-2 | MR 3528480 | Zbl 1386.76179
[3] Chadha, M., Jena, J.: Impact of dust in the decay of blast waves produced by a nuclear explosion. Proc. R. Soc. Lond., A, Math. Phys. Eng. Sci. 476 (2020), Article ID 20200105, 22 pages. DOI 10.1098/rspa.2020.0105 | MR 4126476 | Zbl 1472.76058
[4] Chaturani, P.: Strong cylindrical shocks in a rotating gas. Appl. Sci. Res. 23 (1971), 197-211. DOI 10.1007/BF00413198 | Zbl 0222.76068
[5] Jena, J., Sharma, V. D.: Propagation and interaction of waves in a non-ideal gas. ZAMM, Z. Angew. Math. Mech. 81 (2001), 417-429. DOI 10.1002/1521-4001(200106)81:6<417::AID-ZAMM417>3.0.CO;2-9 | Zbl 1012.76080
[6] Levin, V. A., Skopina, G. A.: Detonation wave propagation in rotational gas flows. J. App. Mech. Tech. Phys. 45 (2004), 457-460 translated from Prikl. Mekh. Tekh. Fiz. 45 2004 3-6. DOI 10.1023/B:JAMT.0000030320.77965.c1 | MR 2075127 | Zbl 1049.76037
[7] Nath, G.: Self-similar solutions for unsteady flow behind an exponential shock in an axisymmetric rotating dusty gas. Shock Waves 24 (2014), 415-428. DOI 10.1007/s00193-013-0474-3 | MR 3357255
[8] Nath, G., Sahu, P. K., Chaurasia, S.: Self-similar solution for the flow behind an exponential shock wave in a rotational axisymmetric non-ideal gas with magnetic field. Chinese J. Phys. 58 (2019), 280-293. DOI 10.1016/j.cjph.2019.02.007
[9] Pai, S. I.: Two Phase Flows. Vieweg Tracts in Pure and Applied Physics 3. Vieweg, Braunschweig (1977). DOI 10.1007/978-3-322-86348-5 | MR 0452096 | Zbl 0382.76081
[10] Palo, N. D., Jena, J., Chadha, M.: An analytical approach to study kinematics of shock waves in a dusty, cylindrical gas flow. ZAMM, Z. Angew. Math. Mech. 102 (2022), Article ID e202200019, 20 pages. DOI 10.1002/zamm.202200019 | MR 4559166
[11] Parker, D. F., Seymour, B. R.: Finite amplitude one-dimensional pulses in an inhomogeneous granular material. Arch. Ration. Mech. Anal. 72 (1980), 265-284. DOI 10.1007/BF00281592 | MR 0549644 | Zbl 0423.73088
[12] Radha, C., Sharma, V. D.: Propagation and interaction of waves in a relaxing gas. Philos. Trans. R. Soc. Lond., Ser. A 352 (1995), 169-195. DOI 10.1098/rsta.1995.0062 | Zbl 0844.76042
[13] Sahu, P. K.: Propagation of an exponential shock wave in a rotational axisymmetric isothermal or adiabatic flow of a self-gravitating non-ideal gas under the influence of axial or azimuthal magnetic field. Chaos Solitons Fractals 135 (2020), Article ID 109739, 22 pages. DOI 10.1016/j.chaos.2020.109739 | MR 4083012 | Zbl 1489.76034
[14] Varley, E., Cumberbatch, E.: Non-linear, high frequency sound waves. J. Inst. Math. Appl. 2 (1966), Article ID 133-143. DOI 10.1093/imamat/2.2.133 | MR 0197027 | Zbl 0151.42601
[15] Varley, E., Cumberbatch, E.: Large amplitude waves in stratified media: Acoustic pulses. J. Fluid Mech. 43 (1970), 513-537. DOI 10.1017/S0022112070002550 | MR 0269183 | Zbl 0207.26102
[16] Vishwakarma, J. P., Nath, G.: Propagation of a cylindrical shock wave in a rotating dusty gas with heat conduction and radiation heat flux. Phys. Scr. 81 (2010), Article ID 045401, 9 pages. DOI 10.1088/0031-8949/81/04/045401 | MR 2825996 | Zbl 1273.76385
[17] Vishwakarma, J. P., Nath, G.: Similarity solution for a cylindrical shock wave in a rotational axisymmetric dusty gas with heat conduction and radiation heat flux. Commun. Nonlinear Sci. Numer. Simul. 17 (2012), 154-169. DOI 10.1016/j.cnsns.2011.04.021 | MR 2825996 | Zbl 1242.76106
[18] Whitham, G. B.: On the propagation of weak shock waves. J. Fluid Mech. 1 (1956), 290-318. DOI 10.1017/S0022112056000172 | MR 0082322 | Zbl 0073.21103
[19] Whitham, G. B.: Linear and Nonlinear Waves. Pure and Applied Mathematics. John Wiley & Sons, New York (1974). DOI 10.1002/9781118032954 | MR 0483954 | Zbl 0373.76001
Partner of
EuDML logo