[1] Zarch, M. Babaei, Fazeli, S. A. Shahzadeh:
Inverse eigenvalue problem for a kind of acyclic matrices. Iran. J. Sci. Technol. Trans. A Sci. 43 (2019), 2531-2539.
DOI 10.1007/s40995-019-00737-x |
MR 4008794
[2] Zarch, M. Babaei, Fazeli, S. A. Shahzadeh, Karbassi, S. M.: Inverse eigenvalue problem for matrices whose graph is a banana tree. J. Algorithms Comput. 50 (2018), 89-101.
[3] Chen, W. Y., Li, X., Wang, C., Zhang, X.:
Linear time algorithms to the minimum all-ones problem for unicyclic and bicyclic graphs. Workshop on Graphs and Combinatorial Optimization Electronic Notes Discrete Mathematics 17. Elsevier, Amsterdam (2004), 93-98.
DOI 10.1016/j.endm.2004.03.018 |
MR 2159881 |
Zbl 1152.05373
[5] Cvetković, D.:
Applications of graph spectra: An introduction to the literature. Applications of Graph Spectra Zbornik Radova 13. Matematički Institut SANU, Beograd (2009), 7-31.
MR 2543252 |
Zbl 1265.05002
[7] Hadji, M., Chau, M.:
On unicyclic graphs spectra: New results. IEEE Intl Conference on Computational Science and Engineering (CSE) and IEEE Intl Conference on Embedded and Ubiquitous Computing (EUC) and 15th Intl Symposium on Distributed Computing and Applications for Business Engineering (DCABES) IEEE, Paris (2016), 586-593.
DOI 10.1109/CSE-EUC-DCABES.2016.245
[8] Haoer, R. S., Atan, K. A., Said, M. R., Khalaf, A. M., Hasni, R.:
Zagreb-eccentricity indices of unicyclic graph with application to cycloalkanes. J. Comput. Theor. Nanosci. 13 (2016), 8870-8873.
DOI 10.1166/jctn.2016.6055
[10] Johnson, C. R., Duarte, A. Leal, Saiago, C. M.:
Inverse eigenvalue problems and lists of multiplicities of eigenvalues for matrices whose graph is a tree: The case of generalized stars and double generalized stars. Linear Algebra Appl. 373 (2003), 311-330.
DOI 10.1016/S0024-3795(03)00582-2 |
MR 2022294 |
Zbl 1035.15010