Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
inverse eigenvalue problem; unicyclic graph; leading principal submatrices
Summary:
In this paper, we deal with the construction of symmetric matrix whose corresponding graph is connected and unicyclic using some pre-assigned spectral data. Spectral data for the problem consist of the smallest and the largest eigenvalues of each leading principal submatrices. Inverse eigenvalue problem (IEP) with this set of spectral data is generally known as the extremal IEP. We use a standard scheme of labeling the vertices of the graph, which helps in getting a simple relation between the characteristic polynomials of each leading principal submatrix. Sufficient condition for the existence of the solution is obtained. The proof is constructive, hence provides an algorithmic procedure for finding the required matrix. Furthermore, we provide the condition under which the same problem is solvable when two particular entries of the required matrix satisfy a linear relation.
References:
[1] Zarch, M. Babaei, Fazeli, S. A. Shahzadeh: Inverse eigenvalue problem for a kind of acyclic matrices. Iran. J. Sci. Technol. Trans. A Sci. 43 (2019), 2531-2539. DOI 10.1007/s40995-019-00737-x | MR 4008794
[2] Zarch, M. Babaei, Fazeli, S. A. Shahzadeh, Karbassi, S. M.: Inverse eigenvalue problem for matrices whose graph is a banana tree. J. Algorithms Comput. 50 (2018), 89-101.
[3] Chen, W. Y., Li, X., Wang, C., Zhang, X.: Linear time algorithms to the minimum all-ones problem for unicyclic and bicyclic graphs. Workshop on Graphs and Combinatorial Optimization Electronic Notes Discrete Mathematics 17. Elsevier, Amsterdam (2004), 93-98. DOI 10.1016/j.endm.2004.03.018 | MR 2159881 | Zbl 1152.05373
[4] Chu, M. T.: Inverse eigenvalue problems. SIAM Rev. 40 (1998), 1-39. DOI 10.1137/S00361445963039 | MR 1612561 | Zbl 0915.15008
[5] Cvetković, D.: Applications of graph spectra: An introduction to the literature. Applications of Graph Spectra Zbornik Radova 13. Matematički Institut SANU, Beograd (2009), 7-31. MR 2543252 | Zbl 1265.05002
[6] Gladwell, G. M. L.: Inverse problems in vibration. Appl. Mech. Rev. 39 (1986), 1013-1018. DOI 10.1115/1.3149517 | MR 0874749 | Zbl 0588.73110
[7] Hadji, M., Chau, M.: On unicyclic graphs spectra: New results. IEEE Intl Conference on Computational Science and Engineering (CSE) and IEEE Intl Conference on Embedded and Ubiquitous Computing (EUC) and 15th Intl Symposium on Distributed Computing and Applications for Business Engineering (DCABES) IEEE, Paris (2016), 586-593. DOI 10.1109/CSE-EUC-DCABES.2016.245
[8] Haoer, R. S., Atan, K. A., Said, M. R., Khalaf, A. M., Hasni, R.: Zagreb-eccentricity indices of unicyclic graph with application to cycloalkanes. J. Comput. Theor. Nanosci. 13 (2016), 8870-8873. DOI 10.1166/jctn.2016.6055
[9] Horn, R. A., Johnson, C. R.: Matrix Analysis. Cambridge University Press, Cambridge (2013). DOI 10.1017/CBO9780511810817 | MR 2978290 | Zbl 1267.15001
[10] Johnson, C. R., Duarte, A. Leal, Saiago, C. M.: Inverse eigenvalue problems and lists of multiplicities of eigenvalues for matrices whose graph is a tree: The case of generalized stars and double generalized stars. Linear Algebra Appl. 373 (2003), 311-330. DOI 10.1016/S0024-3795(03)00582-2 | MR 2022294 | Zbl 1035.15010
[11] Li, N.: A matrix inverse eigenvalue problem and its application. Linear Algebra Appl. 266 (1997), 143-152. DOI 10.1016/S0024-3795(96)00639-8 | MR 1473198 | Zbl 0901.15003
[12] Li, X., Magnant, C., Qin, Z.: Properly Colored Connectivity of Graphs. SpringerBriefs in Mathematics. Springer, Cham (2018). DOI 10.1007/978-3-319-89617-5 | MR 3793127 | Zbl 1475.05002
[13] Li, X., Wang, J.: On the ABC spectra radius of unicyclic graphs. Linear Algebra Appl. 596 (2020), 71-81. DOI 10.1016/j.laa.2020.03.007 | MR 4075597 | Zbl 1435.05130
[14] Nylen, P., Uhlig, F.: Inverse eigenvalue problems associated with spring-mass systems. Linear Algebra Appl. 254 (1997), 409-425. DOI 10.1016/S0024-3795(96)00316-3 | MR 1436689 | Zbl 0879.15007
[15] Peng, J., Hu, X.-Y., Zhang, L.: Two inverse eigenvalue problems for a special kind of matrices. Linear Algebra Appl. 416 (2006), 336-347. DOI 10.1016/j.laa.2005.11.017 | MR 2242733 | Zbl 1097.65053
[16] Pickmann, H., Egaña, J., Soto, R. L.: Extremal inverse eigenvalue problem for bordered diagonal matrices. Linear Algebra Appl. 427 (2007), 256-271. DOI 10.1016/j.laa.2007.07.020 | MR 2351358 | Zbl 1144.65026
[17] Pickmann, H., Egaña, J. C., Soto, R. L.: Two inverse eigenproblems for symmetric doubly arrow matrices. Electron. J. Linear Algebra 18 (2009), 700-718. DOI 10.13001/1081-3810.1339 | MR 2565881 | Zbl 1189.65072
[18] Pickmann-Soto, H., Arela-Pérez, S., Nina, H., Valero, E.: Inverse maximal eigenvalues problems for Leslie and doubly Leslie matrices. Linear Algebra Appl. 592 (2020), 93-112. DOI 10.1016/j.laa.2020.01.019 | MR 4056072 | Zbl 1436.15019
[19] Sharma, D., Sarma, B. K.: Extremal inverse eigenvalue problem for irreducible acyclic matrices. Appl. Math. Sci. Eng. 30 (2022), 192-209. DOI 10.1080/27690911.2022.2041631 | MR 4451929
[20] Sharma, D., Sen, M.: Inverse eigenvalue problems for two special acyclic matrices. Mathematics 4 (2016), Article ID 12, 11 pages. DOI 10.3390/math4010012 | Zbl 1382.65109
[21] Sharma, D., Sen, M.: Inverse eigenvalue problems for acyclic matrices whose graph is a dense centipede. Spec. Matrices 6 (2018), 77-92. DOI 10.1515/spma-2018-0008 | MR 3764333 | Zbl 1391.15098
[22] Sharma, D., Sen, M.: The minimax inverse eigenvalue problem for matrices whose graph is a generalized star of depth 2. Linear Algebra Appl. 621 (2021), 334-344. DOI 10.1016/j.laa.2021.03.021 | MR 4235267 | Zbl 1462.05243
[23] Wei, Y., Dai, H.: An inverse eigenvalue problem for the finite element model of a vibrating rod. J. Comput. Appl. Math. 300 (2016), 172-182. DOI 10.1016/j.cam.2015.12.038 | MR 3460292 | Zbl 1382.74129
Partner of
EuDML logo