Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
inverse source problem; nonlinear parabolic equation; memory term; optimal control
Summary:
In this work, we consider an inverse backward problem for a nonlinear parabolic equation of the Burgers' type with a memory term from final data. To this aim, we first establish the well-posedness of the direct problem. On the basis of the optimal control framework, the existence and necessary condition of the minimizer for the cost functional are established. The global uniqueness and stability of the minimizer are deduced from the necessary condition. Numerical experiments demonstrate the effectiveness of this approach.
References:
[1] Allal, B., Fragnelli, G.: Null controllability of degenerate parabolic equation with memory. Math. Methods Appl. Sci. 44 (2021), 9163-9190. DOI 10.1002/mma.7342 | MR 4279843 | Zbl 1470.35205
[2] Belov, Y. Y., Korshun, K. V.: An identification problem of source function in the Burgers-type equation. J. Sib. Fed. Univ., Math. Phys. 5 (2012), 497-506 Russian. Zbl 07324917
[3] Biazar, J., Ghazvini, H.: Convergence of the homotopy perturbation method for partial differential equations. Nonlinear Anal., Real World Appl. 10 (2009), 2633-2640. DOI 10.1016/j.nonrwa.2008.07.002 | MR 2523226 | Zbl 1173.35395
[4] Biot, M. A.: Mechanics of Incremental Deformations. John Wiley & Sons, New York (1965). MR 0185873
[5] Biskamp, D.: Collisionless shock waves in plasmas. Nuclear Fusion 13 (1973), Article ID 719. DOI 10.1088/0029-5515/13/5/010
[6] Burgers, J. M.: A mathematical model illustrating the theory of turbulence. Advances in Applied Mechanics. Vol. 1 Academic Press, New York (1948), 171-199. DOI 10.1016/S0065-2156(08)70100-5 | MR 0027195 | Zbl 0038.36807
[7] Campanella, B., Legnaioli, S., Pagnotta, S., Poggialini, F., Palleschi, V.: Shock waves in laser-induced plasmas. Atoms 7 (2019), Article ID 57, 14 pages. DOI 10.3390/atoms7020057
[8] Carneiro, F. L., Ulhoa, S. C., Maluf, J. W., Rocha-Neto, J. F. da: Non-linear plane gravitational waves as space-time defects. Eur. Phys. J. C 81 (2021), Article ID 67, 9 pages. DOI 10.1140/epjc/s10052-021-08862-x | MR 3847069
[9] Dağ, I., Irk, D., Saka, B.: A numerical solution of the Burgers' equation using cubic B-splines. Appl. Math. Comput. 163 (2005), 199-211. DOI 10.1016/j.amc.2004.01.028 | MR 2115588 | Zbl 1060.65652
[10] Dussault, J.-P.: La différentiation automatique et son utilisation en optimisation. RAIRO, Oper. Res. 42 (2008), 141-155 French. DOI 10.1051/ro:2008007 | MR 2431397 | Zbl 1153.65027
[11] Grasselli, M., Lorenzi, A.: Abstract nonlinear Volterra integrodifferential equations with nonsmooth kernels. Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser., Rend. Lincei, Mat. Appl. 2 (1991), 43-53. MR 1120122 | Zbl 0819.45006
[12] Inc, M.: The approximate and exact solutions of the space- and time-fractional Burgers equations with initial conditions by variational iteration method. J. Math. Anal. Appl. 345 (2008), 476-484. DOI 10.1016/j.jmaa.2008.04.007 | MR 2422665 | Zbl 1146.35304
[13] Jeffrey, A., Taniuti, T.: Non-Linear Wave Propagation with Applications to Physics and Magnetohydrodynamics. Mathematics in Science and Engineering 9. Academic Press, New York (1964). DOI 10.1016/s0076-5392(08)x6141-7 | MR 0167137 | Zbl 0117.21103
[14] Jiwari, R.: A Haar wavelet quasilinearization approach for numerical simulation of Burgers' equation. Comput. Phys. Commun. 183 (2012), 2413-2423. DOI 10.1016/j.cpc.2012.06.009 | MR 2956605 | Zbl 1302.35337
[15] Jiwari, R.: A hybrid numerical scheme for the numerical solution of the Burgers' equation. Comput. Phys. Commun. 188 (2015), 59-67. DOI 10.1016/j.cpc.2014.11.004 | MR 3294321 | Zbl 1344.65082
[16] Leonenko, N. N., Woyczynski, W. A.: Parameter identification for singular random fields arising in Burgers' turbulence. J. Stat. Plann. Inference 80 (1999), 1-13. DOI 10.1016/S0378-3758(98)00239-0 | MR 1713800 | Zbl 0986.62077
[17] Leonenko, N. N., Woyczynski, W. A.: Parameter identification for stochastic Burgers' flows via parabolic rescaling. Probab. Math. Stat. 21 (2001), 1-55. MR 1869720 | Zbl 1075.62627
[18] Lions, J. L., Magenes, E.: Non-Homogeneous Boundary Value Problems and Applications. Vol. 1. Die Grundlehren der mathematischen Wissenschaften 181. Springer, Berlin (1972). DOI 10.1007/978-3-642-65161-8 | MR 0350177 | Zbl 0223.35039
[19] Popel, S. I., Yu, M. Y., Tsytovich, V. N.: Shock waves in plasmas containing variable-charge impurities. Phys. Plasmas 3 (1996), 4313-4315. DOI 10.1063/1.872048
[20] Simon, J.: Compact sets in the space $L^p(0,T;B)$. Ann. Mat. Pura Appl., IV. Ser. 146 (1986), 65-96. DOI 10.1007/BF01762360 | MR 0916688 | Zbl 0629.46031
[21] Wang, Z., Vanden-Broeck, J.-M., Milewski, P. A.: Two-dimensional flexural-gravity waves of finite amplitude in deep water. IMA J. Appl. Math. 78 (2013), 750-761. DOI 10.1093/imamat/hxt020 | MR 3085313 | Zbl 1282.76080
[22] Zakharov, V. E., Musher, S. L., Rubenchik, A. M.: Hamiltonian approach to the description of non-linear plasma phenomena. Phys. Reports 129 (1985), 285-366. DOI 10.1016/0370-1573(85)90040-7 | MR 0824169
Partner of
EuDML logo