[2] Belov, Y. Y., Korshun, K. V.:
An identification problem of source function in the Burgers-type equation. J. Sib. Fed. Univ., Math. Phys. 5 (2012), 497-506 Russian.
Zbl 07324917
[4] Biot, M. A.:
Mechanics of Incremental Deformations. John Wiley & Sons, New York (1965).
MR 0185873
[7] Campanella, B., Legnaioli, S., Pagnotta, S., Poggialini, F., Palleschi, V.:
Shock waves in laser-induced plasmas. Atoms 7 (2019), Article ID 57, 14 pages.
DOI 10.3390/atoms7020057
[8] Carneiro, F. L., Ulhoa, S. C., Maluf, J. W., Rocha-Neto, J. F. da:
Non-linear plane gravitational waves as space-time defects. Eur. Phys. J. C 81 (2021), Article ID 67, 9 pages.
DOI 10.1140/epjc/s10052-021-08862-x |
MR 3847069
[11] Grasselli, M., Lorenzi, A.:
Abstract nonlinear Volterra integrodifferential equations with nonsmooth kernels. Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser., Rend. Lincei, Mat. Appl. 2 (1991), 43-53.
MR 1120122 |
Zbl 0819.45006
[17] Leonenko, N. N., Woyczynski, W. A.:
Parameter identification for stochastic Burgers' flows via parabolic rescaling. Probab. Math. Stat. 21 (2001), 1-55.
MR 1869720 |
Zbl 1075.62627
[19] Popel, S. I., Yu, M. Y., Tsytovich, V. N.:
Shock waves in plasmas containing variable-charge impurities. Phys. Plasmas 3 (1996), 4313-4315.
DOI 10.1063/1.872048