Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
synchronization; impulsive coupled oscillator; rotating periodic solution; impulsive system
Summary:
The existence of synchronization is an important issue in complex dynamical networks. In this paper, we study the synchronization of impulsive coupled oscillator networks with the aid of rotating periodic solutions of impulsive system. The type of synchronization is closely related to the rotating matrix, which gives an insight for finding various types of synchronization in a united way. We transform the synchronization of impulsive coupled oscillators into the existence of rotating periodic solutions in a relevant impulsive system. Some existence theorems about rotating periodic solutions for a non-homogeneous linear impulsive system and a nonlinear perturbation system are established by topology degree theory. Finally, we give two examples to show synchronization behaviors in impulsive coupled oscillator networks.
References:
[1] Bainov, D., Simeonov, P.: Impulsive Differential Equations: Periodic Solutions and Applications. Pitman Monographs and Surveys in Pure and Applied Mathematics 66. Longman Scientific & Technical, New York (1993). DOI 10.1201/9780203751206 | MR 1266625 | Zbl 0815.34001
[2] Barkley, D.: Euclidean symmetry and the dynamics of rotating spiral waves. Phys. Rev. Lett. 72 (1994), 164-167. DOI 10.1103/PhysRevLett.72.164
[3] Cui, X., Li, H.-L., Zhang, L., Hu, C., Bao, H.: Complete synchronization for discrete-time fractional-order coupled neural networks with time delays. Chaos Solitons Fractals 174 (2023), Article ID 113772, 8 pages. DOI 10.1016/j.chaos.2023.113772 | MR 4612680
[4] Dong, X., Yang, X.: Affine-periodic solutions for perturbed systems. J. Appl. Anal. Comput. 12 (2022), 754-769. DOI 10.11948/20210309 | MR 4398690
[5] Eilertsen, J., Schnell, S., Walcher, S.: Natural parameter conditions for singular perturbations of chemical and biochemical reaction networks. Bull. Math. Biol. 85 (2023), Article ID 48, 75 pages. DOI 10.1007/s11538-023-01150-7 | MR 4581145 | Zbl 1519.92362
[6] Fečkan, M., Liu, K., Wang, J. R.: $(\omega,\Bbb{T})$-periodic solutions of impulsive evolution equations. Evol. Equ. Control Theory 11 (2022), 415-437. DOI 10.3934/eect.2021006 | MR 4376330 | Zbl 1483.34082
[7] Fokken, E., Göttlich, S., Kolb, O.: Modeling and simulation of gas networks coupled to power grids. J. Eng. Math. 119 (2019), 217-239. DOI 10.1007/s10665-019-10026-6 | MR 4039640 | Zbl 1437.35481
[8] Huygens, C.: Horologium Oscillatorium: Sive de Motu Pendulorum ad Horologia Aptato Demonstrationes Geometricae. F. Muguet, Paris (1673), Latin.
[9] Jiang, H., Liu, Y., Zhang, L., Yu, J.: Anti-phase synchronization and symmetry-breaking bifurcation of impulsively coupled oscillators. Commun. Nonlinear Sci. Numer. Simul. 39 (2016), 199-208. DOI 10.1016/j.cnsns.2016.02.033 | MR 3498480 | Zbl 1510.34068
[10] Karimaghaee, P., Heydari, Z. R.: Lag-synchronization of two different fractional-order time-delayed chaotic systems using fractional adaptive sliding mode controller. Int. J. Dyn. Control 9 (2021), 211-224. DOI 10.1007/s40435-020-00628-9 | MR 4215925
[11] Li, H.-J., Xu, W., Song, S., Wang, W.-X., Perc, M.: The dynamics of epidemic spreading on signed networks. Chaos Solitons Fractals 151 (2021), Article ID 111294, 7 pages. DOI 10.1016/j.chaos.2021.111294 | MR 4296951 | Zbl 1498.68022
[12] Liu, G., Li, Y., Yang, X.: Existence and multiplicity of rotating periodic solutions for Hamiltonian systems with a general twist condition. J. Differ. Equations 369 (2023), 229-252. DOI 10.1016/j.jde.2023.06.001 | MR 4603828 | Zbl 07707638
[13] Marichal, R. L., Piñeiro, J. D.: Analysis of multiple quasi-periodic orbits in recurrent neural networks. Neurocomput. 162 (2015), 85-95. DOI 10.1016/j.neucom.2015.04.001
[14] Meng, X., Li, Y.: Affine-periodic solutions for discrete dynamical systems. J. Appl. Anal. Comput. 5 (2015), 781-792. DOI 10.11948/2015059 | MR 3367467 | Zbl 1448.39016
[15] Pan, L., Cao, J.: Anti-periodic solution for delayed cellular neural networks with impulsive effects. Nonlinear Anal., Real World Appl. 12 (2011), 3014-3027. DOI 10.1016/j.nonrwa.2011.05.002 | MR 2832944 | Zbl 1231.34121
[16] Pecora, L. M., Sorrentino, F., Hagerstrom, A. M., Murphy, T. E., Roy, R.: Cluster synchronization and isolated desynchronization in complex networks with symmetries. Nat. Commun. 5 (2014), Article ID 4079, 8 pages. DOI 10.1038/ncomms5079
[17] Rosenblum, M. G., Pikovsky, A. S., Kurths, J.: Phase synchronization of chaotic oscillators. Phys. Rev. Lett. 76 (1996), 1804-1807. DOI 10.1103/PhysRevLett.76.1804 | MR 1869044
[18] Samojlenko, A. M., Perestyuk, N. A.: Periodic and almost-periodic solutions of impulsive differential equations. Ukr. Math. J. 34 (1982), 55-61. DOI 10.1007/BF01086134 | MR 0647932 | Zbl 0513.34047
[19] Sun, W., Guan, J., Lü, J., Zheng, Z., Yu, X., Chen, S.: Synchronization of the networked system with continuous and impulsive hybrid communications. IEEE Trans. Neural Netw. Learn. Syst. 31 (2020), 960-971. DOI 10.1109/TNNLS.2019.2911926 | MR 4104636
[20] Wang, C., Li, Y.: Affine-periodic solutions for nonlinear dynamic equations on time scales. Adv. Difference Equ. 2015 (2015), Article ID 286, 16 pages. DOI 10.1186/s13662-015-0634-0 | MR 3397510 | Zbl 1351.34110
[21] Wang, S., Li, Y.: Synchronization or cluster synchronization in coupled Van der Pol oscillators networks with different topological types. Phys. Scripta 97 (2022), Article ID 035205, 16 pages. DOI 10.1088/1402-4896/ac46f3
[22] Wang, S., Li, Y., Yang, X.: Synchronization, symmetry and rotating periodic solutions in oscillators with Huygens' coupling. Physica D 434 (2022), Article ID 133208, 22 pages. DOI 10.1016/j.physd.2022.133208 | MR 4393340 | Zbl 1498.34113
[23] Wang, S., Wang, L., Yang, X.: Numerical method for finding synchronous solutions of the coupled oscillator networks. J. Optim. Theory Appl. 199 (2023), 258-272. DOI 10.1007/s10957-023-02282-5 | MR 4651066
[24] Wang, C., Yang, X., Chen, X.: Affine-periodic solutions for impulsive differential systems. Qual. Theory Dyn. Syst. 19 (2020), Article ID 1, 22 pages. DOI 10.1007/s12346-019-00337-5 | MR 4052028 | Zbl 1451.34052
[25] Wang, S., Yang, X., Li, Y.: The mechanism of rotating waves in a ring of unidirectionally coupled Lorenz systems. Commun. Nonlinear Sci. Numer. Simul. 90 (2020), Article ID 105370, 12 pages. DOI 10.1016/j.cnsns.2020.105370 | MR 4110037 | Zbl 1498.34121
[26] Xing, J., Yang, X., Li, Y.: Affine-periodic solutions by averaging methods. Sci. China, Math. 61 (2018), 439-452. DOI 10.1007/s11425-016-0455-1 | MR 3762236 | Zbl 1459.34108
[27] Xing, J., Yang, X., Li, Y.: Lyapunov center theorem on rotating periodic orbits for Hamiltonian systems. J. Differ. Equations 363 (2023), 170-194. DOI 10.1016/j.jde.2023.03.016 | MR 4562787 | Zbl 1520.70015
[28] Xu, F., Yang, X., Li, Y., Liu, M.: Existence of affine-periodic solutions to Newton affine-periodic systems. J. Dyn. Control Syst. 25 (2019), 437-455. DOI 10.1007/s10883-018-9425-8 | MR 3953149 | Zbl 1421.34026
[29] Zhang, L., Jiang, H., Bi, Q.: Reliable impulsive lag synchronization for a class of nonlinear discrete chaotic systems. Nonlinear Dyn. 59 (2010), 529-534. DOI 10.1007/s11071-009-9559-z | MR 2599956 | Zbl 1189.93085
[30] Zhang, Y., Yang, X., Li, Y.: Affine-periodic solutions for dissipative systems. Abstr. Appl. Anal. 2013 (2013), Article ID 157140, 4 pages. DOI 10.1155/2013/157140 | MR 3147840 | Zbl 1303.34033
[31] Zhong, X., Wang, S.: Learning coupled oscillators system with reservoir computing. Symmetry 14 (2022), Article ID 1084, 14 pages. DOI 10.3390/sym14061084
[32] Zhou, W., Sun, Y., Zhang, X., Shi, P.: Cluster synchronization of coupled neural networks with Lévy noise via event-triggered pinning control. IEEE Trans. Neural Netw. Learn. Syst. 33 (2022), 6144-6157. DOI 10.1109/TNNLS.2021.3072475 | MR 4506265
Partner of
EuDML logo