[2] Besson, O.:
Maximum likelihood covariance matrix estimation from two possibly mismatched data sets. Signal Process. 167 (2020), Article ID 107285, 9 pages.
DOI 10.1016/j.sigpro.2019.107285
[6] Cho, S., Katayama, S., Lim, J., Choi, Y.-G.:
Positive-definite modification of a covariance matrix by minimizing the matrix $\ell_{\infty}$ norm with applications to portfolio optimization. AStA, Adv. Stat. Anal. 105 (2021), 601-627.
DOI 10.1007/s10182-021-00396-7 |
MR 4340896 |
Zbl 1478.62118
[7] Danaher, P., Wang, P., Witten, D. M.:
The joint graphical lasso for inverse covariance estimation across multiple classes. J. R. Stat. Soc., Ser. B, Stat. Methodol. 76 (2014), 373-397.
DOI 10.1111/rssb.12033 |
MR 3164871 |
Zbl 07555455
[14] Jia, S., Zhang, C., Lu, H.:
Covariance function versus covariance matrix estimation in efficient semi-parametric regression for longitudinal data analysis. J. Multivariate Anal. 187 (2022), Article ID 104900, 14 pages.
DOI 10.1016/j.jmva.2021.104900 |
MR 4339021 |
Zbl 1480.62098
[15] Kalina, J., Tebbens, J. D.:
Algorithms for regularized linear discriminant analysis. Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms Scitepress, Setúbal (2015), 128-133.
DOI 10.5220/0005234901280133
[16] Kochan, N., Tütüncü, G. Y., Giner, G.:
A new local covariance matrix estimation for the classification of gene expression profiles in high dimensional RNA-Seq data. Expert Systems Appl. 167 (2021), Article ID 114200, 5 pages.
DOI 10.1016/j.eswa.2020.114200
[19] Li, C.-N., Ren, P.-W., Guo, Y.-R., Ye, Y.-F., Shao, Y.-H.:
Regularized linear discriminant analysis based on generalized capped $\ell_{2,q}$-norm. (to appear) in Ann. Oper. Res.
DOI 10.1007/s10479-022-04959-y
[21] Massignan, J. A. D., London, J. B. A., Bessani, M., Maciel, C. D., Fannucchi, R. Z., Miranda, V.:
Bayesian inference approach for information fusion in distribution system state estimation. IEEE Trans. Smart Grid 13 (2022), 526-540.
DOI 10.1109/TSG.2021.3128053
[23] Raninen, E., Ollila, E.:
Coupled regularized sample covariance matrix estimator for multiple classes. IEEE Trans. Signal Process. 69 (2021), 5681-5692.
DOI 10.1109/TSP.2021.3118546 |
MR 4332948
[25] Scheidegger, C., Hörrmann, J., Bühlmann, P.:
The weighted generalised covariance measure. J. Mach. Learn. Res. 23 (2022), Article ID 273, 68 pages.
MR 4577712
[32] Xi, B., Li, J., Li, Y., Song, R., Hong, D., Chanussot, J.:
Few-shot learning with class-co-variance metric for hyperspectral image classification. IEEE Trans. Image Process. 31 (2022), 5079-5092.
DOI 10.1109/TIP.2022.3192712
[38] Zhang, Y., Zhou, Y., Liu, X.:
Applications on linear spectral statistics of high-dimensional sample covariance matrix with divergent spectrum. Comput. Stat. Data Anal. 178 (2023), Article ID 107617, 19 pages.
DOI 10.1016/j.csda.2022.107617 |
MR 4483317 |
Zbl 07626679