Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
generalized Toeplitz operator; boundedness; compactness; Schatten class; Fock space
Summary:
Let $\mu $ be a positive Borel measure on the complex plane $\mathbb {C}^n$ and let $j=(j_1,\cdots ,j_n)$ with $j_i\in \mathbb {N}$. We study the generalized Toeplitz operators $T_{\mu }^{(j)}$ on the Fock space $F_{\alpha }^{2}$. We prove that $T_{\mu }^{(j)}$ is bounded (or compact) on $F_{\alpha }^{2}$ if and only if $\mu $ is a Fock-Carleson measure (or vanishing Fock-Carleson measure). Furthermore, we give a necessary and sufficient condition for $T_{\mu }^{(j)}$ to be in the Schatten $p$-class for $1\leq p<\infty $.
References:
[1] Abreu, L. D., Faustino, N.: On Toeplitz operators and localization operators. Proc. Am. Math. Soc. 143 (2015), 4317-4323. DOI 10.1090/proc/12211 | MR 3373930 | Zbl 1321.47055
[2] Coburn, L. A.: The Bargmann isometry and Gabor-Daubechies wavelet localization operators. Systems, Approximation, Singular Integral Operators, and Related Topics Operator Theory: Advances and Applications 129. Birkhäuser, Basel (2001), 169-178. DOI 10.1007/978-3-0348-8362-7_7 | MR 1882695 | Zbl 1005.47033
[3] Cordero, E., Gröchenig, K.: Time-frequency analysis of localization operators. J. Funct. Anal. 205 (2003), 107-131. DOI 10.1016/S0022-1236(03)00166-6 | MR 2020210 | Zbl 1047.47038
[4] Daubechies, I.: Time-frequency localization operators: A geometric phase space approach. IEEE Trans. Inf. Theory 34 (1988), 605-612. DOI 10.1109/18.9761 | MR 0966733 | Zbl 0672.42007
[5] Engliš, M.: Toeplitz operators and group representations. J. Fourier Anal. 13 (2007), 243-265. DOI 10.1007/s00041-006-6009-x | MR 2334609 | Zbl 1128.47029
[6] Engliš, M.: Toeplitz operators and localization operators. Trans. Am. Math. Soc. 361 (2009), 1039-1052. DOI 10.1090/S0002-9947-08-04547-9 | MR 2452833 | Zbl 1165.47019
[7] Feichtinger, H. G., Nowak, K.: A Szegö-type theorem for Gabor-Toeplitz localization operators. Mich. Math. J. 49 (2001), 13-21. DOI 10.1307/mmj/1008719032 | MR 1827072 | Zbl 1010.47021
[8] Hu, Z., Lv, X.: Toeplitz operators from one Fock space to another. Integral Equations Oper. Theory 70 (2011), 541-559. DOI 10.1007/s00020-011-1887-y | MR 2819157 | Zbl 1262.47044
[9] Isralowitz, J., Zhu, K.: Toeplitz operators on the Fock space. Integral Equations Oper. Theory 66 (2010), 593-611. DOI 10.1007/s00020-010-1768-9 | MR 2609242 | Zbl 1218.47046
[10] Lo, M.-L.: The Bargmann transform and windowed Fourier localization. Integral Equations Oper. Theory 57 (2007), 397-412. DOI 10.1007/s00020-006-1462-0 | MR 2307818 | Zbl 1141.47025
[11] Luecking, D. H.: Trace ideal criteria for Toeplitz operators. J. Funct. Anal. 73 (1987), 345-368. DOI 10.1016/0022-1236(87)90072-3 | MR 0899655 | Zbl 0618.47018
[12] Rudin, W.: Functional Analysis. International Series in Pure and Applied Mathematics. McGraw-Hill, New York (1991). MR 1157815 | Zbl 0867.46001
[13] Suárez, D.: Approximation and symbolic calculus for Toeplitz algebras on the Bergman space. Rev. Mat. Iberoam. 20 (2004), 563-610. DOI 10.4171/RMI/401 | MR 2073132 | Zbl 1057.32005
[14] Suárez, D.: A generalization of Toeplitz operators on the Bergman space. J. Oper. Theory 73 (2015), 315-332. DOI 10.7900/jot.2013nov28.2023 | MR 3346124 | Zbl 1399.32010
[15] Wang, X., Cao, G., Zhu, K.: Boundedness and compactness of operators on the Fock space. Integral Equations Oper. Theory 77 (2013), 355-370. DOI 10.1007/s00020-013-2066-0 | MR 3116663 | Zbl 1317.47026
[16] Xu, C., Yu, T.: Schatten class generalized Toeplitz operators on the Bergman space. Czech. Math. J. 71 (2021), 1173-1188. DOI 10.21136/CMJ.2021.0336-20 | MR 4339120 | Zbl 07442483
[17] Zhu, K.: Positive Toeplitz operators on the weighted Bergman spaces of bounded symmetric domains. J. Oper. Theory 20 (1988), 329-357. MR 1004127 | Zbl 0676.47016
[18] Zhu, K.: Operator Theory in Function Spaces. Mathematical Surveys and Monographs 138. AMS, Providence (2007). DOI 10.1090/surv/138 | MR 2311536 | Zbl 1123.47001
[19] Zhu, K.: Analysis on Fock Spaces. Graduate Texts in Mathematics 263. Springer, New York (2012). DOI 10.1007/978-1-4419-8801-0 | MR 2934601 | Zbl 1262.30003
Partner of
EuDML logo