Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
frame; ring of real-valued continuous function; strongly zero-dimensional; clean element; sublocale
Summary:
We characterize clean elements of $\mathcal R(L)$ and show that $\alpha \in \mathcal {R}(L)$ is clean if and only if there exists a clopen sublocale $U$ in $L$ such that $\frak {c}_L({\rm coz} (\alpha - {\bf 1})) \subseteq U \subseteq \frak {o}_L( {\rm coz} (\alpha ))$. Also, we prove that $\mathcal R(L)$ is clean if and only if $\mathcal R(L)$ has a clean prime ideal. Then, according to the results about $\mathcal R(L),$ we immediately get results about $\mathcal C_{c}(L).$
References:
[1] Aliabad, A. R., Mahmoudi, M.: Pre-image of functions in $C(L)$. Categ. Gen. Algebr. Struct. Appl. 15 (2021), 35-58. DOI 10.52547/CGASA.15.1.35 | MR 4357758 | Zbl 07528806
[2] Azarpanah, F.: When is $C(X)$ a clean ring?. Acta. Math. Hung. 94 (2002), 53-58. DOI 10.1023/A:1015654520481 | MR 1905786 | Zbl 0996.54023
[3] Ball, R. N., Hager, A. W.: On the localic Yosida representation of an archimedean lattice ordered group with weak order unit. J. Pure Appl. Algebra 70 (1991), 17-43. DOI 10.1016/0022-4049(91)90004-L | MR 1100503 | Zbl 0732.06009
[4] Ball, R. N., Walters-Wayland, J.: $C$- and $C^*$-quotients in pointfree topology. Diss. Math. 412 (2002), 1-62. DOI 10.4064/dm412-0-1 | MR 1952051 | Zbl 1012.54025
[5] Banaschewski, B.: Pointfree topology and the spectra of $f$-rings. Ordered Algebraic Structures Kluwer Academic, Dordrecht (1997), 123-148. DOI 10.1007/978-94-011-5640-0_5 | MR 1445110 | Zbl 0870.06017
[6] Banaschewski, B.: The real numbers in pointfree topology. Textos de Mathemática. Series B 12. Universidade de Coimbra, Coimbra (1997). MR 1621835 | Zbl 0891.54009
[7] Banaschewski, B.: Gelfand and exchange rings: Their spectra in pointfree topology. Arab. J. Sci. Eng., Sect. C, Theme Issues 25 (2000), 3-22. MR 1829217 | Zbl 1271.13052
[8] Banaschewski, B.: On the pointfree counterpart of the local definition of classical continuous maps. Categ. Gen. Algebr. Struct. Appl. 8 (2018), 1-8. MR 3754731 | Zbl 1477.06028
[9] Banaschewski, B., Gilmour, C.: Pseudocompactness and the cozero part of a frame. Commentat. Math. Univ. Carol. 37 (1996), 577-587. MR 1426922 | Zbl 0881.54018
[10] Dube, T.: Concerning $P$-frames, essential $P$-frames, and strongly zero-dimensional frames. Algebra Univers. 61 (2009), 115-138. DOI 10.1007/s00012-009-0006-2 | MR 2551788 | Zbl 1190.06007
[11] Elyasi, M., Estaji, A. A., Sarpoushi, M. Robat: Locally functionally countable subalgebra of $\mathcal{R}(L)$. Arch. Math., Brno 56 (2020), 127-140. DOI 10.5817/AM2020-3-127 | MR 4156440 | Zbl 07250674
[12] Estaji, A. A., Feizabadi, A. Karimi, Sarpoushi, M. Robat: $\mathcal z_c$-ideals and prime ideals in ring $\mathcal{R}_c(L)$. Filomat 32 (2018), 6741-6752. DOI 10.2298/FIL1819741E | MR 3899307 | Zbl 07554263
[13] Estaji, A. A., Sarpoushi, M. Robat, Elyasi, M.: Further thoughts on the ring $\mathcal{R}_c(L)$ in frames. Algebra Univers. 80 (2019), Article ID 43, 14 pages. DOI 10.1007/s00012-019-0619-z | MR 4027118 | Zbl 1477.06030
[14] Ferreira, M. J., Picado, J., Pinto, S. M.: Remainders in pointfree topology. Topology Appl. 245 (2018), 21-45. DOI 10.1016/j.topol.2018.06.007 | MR 3823988 | Zbl 1473.06008
[15] Johnstone, P. T.: Stone Spaces. Cambridge Studies in Advanced Mathematics 3. Cambridge University Press, Cambridge (1982). MR 0698074 | Zbl 0499.54001
[16] Johnstone, P. T.: Cartesian monads on toposes. J. Pure Appl. Algebra 116 (1997), 199-220. DOI 10.1016/S0022-4049(96)00165-X | MR 1437621 | Zbl 0881.18001
[17] Johnstone, P. T.: Topos Theory. London Mathematical Society Monographs 10. Academic Press, New York (1997). MR 0470019 | Zbl 0368.18001
[18] Karamzadeh, O. A. S., Namdari, M., Soltanpour, S.: On the locally functionally countable subalgebra of $C(X)$. Appl. Gen. Topol. 16 (2015), 183-207. DOI 10.4995/agt.2015.3445 | MR 3411461 | Zbl 1397.54032
[19] Feizabadi, A. Karimi, Estaji, A. A., Sarpoushi, M. Robat: Pointfree topology version of image of real-valued continuous functions. Categ. Gen. Algebr. Struct. Appl. 9 (2018), 59-75. DOI 10.29252/CGASA.9.1.59 | MR 3833111 | Zbl 1452.06007
[20] Kou, H., Luo, M. K.: Strongly zero-dimensional locales. Acta Math. Sin., Engl. Ser. 18 (2002), 47-54. DOI 10.1007/s101140000072 | MR 1894837 | Zbl 0996.06006
[21] Mehri, R., Mohamadian, R.: On the locally countable subalgebra of $C(X)$ whose local domain is cocountable. Hacet. J. Math. Stat. 46 (2017), 1053-1068. DOI 10.15672/HJMS.2017.435 | MR 3751773 | Zbl 1396.54021
[22] Picado, J., Pultr, A.: Frames and Locales: Topology Without Points. Frontiers in Mathematics. Springer, Berlin (2012). DOI 10.1007/978-3-0348-0154-6 | MR 2868166 | Zbl 1231.06018
[23] Sarpoushi, M. Robat: Pointfree Topology Version of Continuous Functions with Countable Image: Ph.D. Thesis. Hakim Sabzevari University, Sabzevar (2017).
[24] Taha, M., Estaji, A. A., Sarpoushi, M. Robat: On the regularity of $\mathcal{C}_c(\rm L)$. $53^{nd}$ Annual Iranian Mathematics Confrence, University of Science & Technology of Mazandaran, September 5-8, 2022 1323-1326.
Partner of
EuDML logo