Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
Green-Liouville approximation; correct solvability; general Sturm-Liouville equation
Summary:
We consider the equation $$ -(r(x) y'(x))'+q(x)y(x)=f(x),\quad x\in \mathbb R, $$ where $f\in L_p(\mathbb R)$, $p\in (1,\infty )$ and $$ r>0,\quad \frac {1}{r}\in L_1^{\rm loc}(\mathbb R),\quad q\in L_1^{\rm loc}(\mathbb R). $$ For particular equations of this form, we suggest some methods for the study of the question on requirements to the functions $r$ and $q$ under which the above equation is correctly solvable in the space $L_p(\mathbb R),$ $p\in (1,\infty ).$
References:
[1] Chernyavskaya, N. A., Shuster, L. A.: On the WKB-method. Differ. Uravn. 25 (1989), 1826-1829 Russian. MR 1025660 | Zbl 0702.34053
[2] Chernyavskaya, N., Shuster, L.: Necessary and sufficient conditions for the solvability of a problem of Hartman and Wintner. Proc. Am. Math. Soc. 125 (1997), 3213-3228. DOI 10.1090/S0002-9939-97-04186-5 | MR 1443146 | Zbl 0884.34063
[3] Chernyavskaya, N., Shuster, L.: Estimates for the Green function of a general Sturm- Liouville operator and their applications. Proc. Am. Math. Soc. 127 (1999), 1413-1426. DOI 10.1090/S0002-9939-99-05049-2 | MR 1625725 | Zbl 0918.34032
[4] Chernyavskaya, N., Shuster, L.: Regularity of the inversion problem for a Sturm-Liouville equation in $L_p(\Bbb R)$. Methods Appl. Anal. 7 (2000), 65-84. DOI 10.4310/MAA.2000.v7.n1.a4 | MR 1796006 | Zbl 0985.34019
[5] Chernyavskaya, N., Shuster, L.: A criterion for correct solvability of the Sturm-Liouville equation in the space $L_p(\Bbb R)$. Proc. Am. Math. Soc. 130 (2002), 1043-1054. DOI 10.1090/S0002-9939-01-06145-7 | MR 1873778 | Zbl 0994.34014
[6] Chernyavskaya, N. A., Shuster, L. A.: Conditions for correct solvability of a simplest singular boundary value problem of general form. I. Z. Anal. Anwend. 25 (2006), 205-235. DOI 10.4171/ZAA/1285 | MR 2229446 | Zbl 1122.34021
[7] Chernyavskaya, N., Shuster, L.: A criterion for correct solvability in $L_p(\Bbb R)$ of a general Sturm-Liouville equation. J. Lond. Math. Soc., II. Ser. 80 (2009), 99-120. DOI 10.1112/jlms/jdp012 | MR 2520380 | Zbl 1188.34036
[8] Chernyavskaya, N. A., Shuster, L. A.: Methods of analysis of the condition for correct solvability in $L_p(\Bbb R)$ of general Sturm-Liouville equations. Czech. Math. J. 64 (2014), 1067-1098. DOI 10.1007/s10587-014-0154-1 | MR 3304799 | Zbl 1349.34093
[9] Chernyavskaya, N., Shuster, L.: Criteria for correct solvability of a general Sturm-Liouville equation in the space $L_1(\Bbb R)$. Boll. Unione Mat. Ital. 11 (2018), 417-443. DOI 10.1007/s40574-017-0144-y | MR 3869579 | Zbl 1404.34019
[10] Chernyavskaya, N., Shuster, L.: Principal fundamental system of solutions, the Hartman-Wintner problem and correct solvability of the general Sturm-Liouville equation. Available at https://arxiv.org/abs/2210.02911 (2022), 29 pages. DOI 10.48550/arXiv.2210.02911 | MR 3376914
[11] Davies, E. B., Harrell, E. M.: Conformally flat Riemannian metrics, Schrödinger operators, and semiclassical approximation. J. Differ. Equations 66 (1987), 165-188. DOI 10.1016/0022-0396(87)90030-1 | MR 0871993 | Zbl 0616.34020
[12] Hartman, P.: Ordinary Differential Equations. John Wiley & Sons, New York (1964). MR 0171038 | Zbl 0125.32102
[13] Mynbaev, K. T., Otelbaev, M. O.: Weighted Functional Spaces and the Spectrum of Differential Operators. Nauka, Moscow (1988), Russian. MR 0950172 | Zbl 0651.46037
[14] Olver, F. W. J.: Asymptotics and Special Functions. Academic Press, New York (1974). DOI 10.1016/c2013-0-11254-8 | MR 0435697 | Zbl 0303.41035
[15] Titchmarsh, E. C.: The Theory of Functions. Oxford University Press, Oxford (1932). MR 3728294 | Zbl 0005.21004
[16] Whittaker, E. T., Watson, G. N.: A Course of Modern Analysis: An Introduction to the General Theory on Infinite Processes and of Analytic Functions. Cambridge University Press, Cambridge (1962). DOI 10.1017/CBO9780511608759 | MR 0178117 | Zbl 0105.26901
Partner of
EuDML logo