[6] Fujie, K., Winkler, M., Yokota, T.:
Blow-up prevention by logistic sources in a parabolic- elliptic Keller-Segel system with singular sensitivity. Nonlinear Anal., Theory Methods Appl., Ser. A 109 (2014), 56-71.
DOI 10.1016/j.na.2014.06.017 |
MR 3247293 |
Zbl 1297.35051
[7] Fujie, K., Winkler, M., Yokota, T.:
Boundedness of solutions to parabolic-elliptic Keller- Segel systems with signal-dependent sensitivity. Math. Methods Appl. Sci. 38 (2015), 1212-1224.
DOI 10.1002/mma.3149 |
MR 3338145 |
Zbl 1329.35011
[9] Kurt, H. I., Shen, W.:
Finite-time blow-up prevention by logistic source in parabolic-elliptic chemotaxis models with singular sensitivity in any dimensional setting. SIAM J. Math. Anal. 53 (2021), 973-1003.
DOI 10.1137/20M1356609 |
MR 4212880 |
Zbl 1455.35269
[11] Lankeit, J., Winkler, M.:
A generalized solution concept for the Keller-Segel system with logarithmic sensitivity: Global solvability for large nonradial data. NoDEA, Nonlinear Differ. Equ. Appl. 24 (2017), Article ID 49, 33 pages.
DOI 10.1007/s00030-017-0472-8 |
MR 3674184 |
Zbl 1373.35166
[13] Osaki, K., Tsujikawa, T., Yagi, A., Mimura, M.:
Exponential attractor for a chemotaxis-growth system of equations. Nonlinear Anal., Theory Methods Appl., Ser. A 51 (2002), 119-144.
DOI 10.1016/S0362-546X(01)00815-X |
MR 1915744 |
Zbl 1005.35023
[14] Osaki, K., Yagi, A.:
Finite dimensional attractor for one-dimensional Keller-Segel equations. Funkc. Ekvacioj, Ser. Int. 44 (2001), 441-469.
MR 1893940 |
Zbl 1145.37337
[26] Zhang, W.:
Global generalized solvability in the Keller-Segel system with singular sensitivity and arbitrary superlinear degradation. Discrete Contin. Dyn. Syst., Ser. B 28 (2023), 1267-1278.
DOI 10.3934/dcdsb.2022121 |
MR 4509358 |
Zbl 1502.35184