[2] Bellomo, N., Outada, N., Soler, J., Tao, Y., Winkler, M.:
Chemotaxis and cross-diffusion models in complex environments: Models and analytic problems toward a multiscale vision. Math. Models Methods Appl. Sci. 32 (2022), 713-792.
DOI 10.1142/S0218202522500166 |
MR 4421216 |
Zbl 1497.35039
[7] Francesco, M. Di, Lorz, A., Markowich, P. A.:
Chemotaxis-fluid coupled model for swimming bacteria with nonlinear diffusion: Global existence and asymptotic behavior. Discrete Contin. Dyn. Syst. 28 (2010), 1437-1453.
DOI 10.3934/dcds.2010.28.1437 |
MR 2679718 |
Zbl 1276.35103
[12] Horstmann, D.:
From 1970 until present: The Keller-Segel model in chemotaxis and its consequences. I. Jahresber. Dtsch. Math.-Ver. 105 (2003), 103-165.
MR 2013508 |
Zbl 1071.35001
[26] Tuval, I., Cisneros, L., Dombrowski, C., Wolgemuth, C. W., Kessler, J. O., Goldstein, R. E.:
Bacterial swimming and oxygen transport near contact lines. Proc. Natl. Acad. Sci. USA 102 (2005), 2277-2282.
DOI 10.1073/pnas.0406724102 |
Zbl 1277.35332
[35] Winkler, M.:
Boundedness and large time behavior in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion and general sensitivity. Calc. Var. Partial Differ. Equ. 54 (2015), 3789-3828.
DOI 10.1007/s00526-015-0922-2 |
MR 3426095 |
Zbl 1333.35104