Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
strongly 1-absorbing primary ideal; $n$-ideal; primary ideal; semi-primary ideal
Summary:
Let $R$ be a commutative ring with identity. We study the concept of strongly \hbox {1-absorbing} primary ideals which is a generalization of $n$-ideals and a subclass of $1$-absorbing primary ideals. A proper ideal $I$ of $R$ is called strongly 1-absorbing primary if for all nonunit elements $a,b,c \in R$ such that $abc \in I$, it is either $ab \in I$ or $c \in \sqrt {0}$. Some properties of strongly 1-absorbing primary ideals are studied. Finally, rings $R$ over which every semi-primary ideal is strongly 1-absorbing primary, and rings $R$ over which every strongly \hbox {1-absorbing} primary ideal is prime (or primary) are characterized. Many examples are given to illustrate the obtained results.
References:
[1] Almahdi, F. A. A., Bouba, E. M., Koam, A. N. A.: On strongly 1-absorbing primary ideals of commutative rings. Bull. Korean Math. Soc. 57 (2020), 1205-1213. DOI 10.4134/BKMS.b190877 | MR 4155008 | Zbl 1454.13004
[2] Anderson, D. D., Winders, M.: Idealization of a module. J. Commut. Algebra 1 (2009), 3-56. DOI 10.1216/JCA-2009-1-1-3 | MR 2462381 | Zbl 1194.13002
[3] Badawi, A.: On 2-absorbing ideals of commutative rings. Bull. Aust. Math. Soc. 75 (2007), 417-429. DOI 10.1017/S0004972700039344 | MR 2331019 | Zbl 1120.13004
[4] Badawi, A., Tekir, U., Yetkin, E.: On 2-absorbing primary ideals in commutative rings. Bull. Korean Math. Soc. 51 (2014), 1163-1173. DOI 10.4134/BKMS.2014.51.4.1163 | MR 3248714 | Zbl 1308.13001
[5] Badawi, A., Yetkin, E.: On 1-absorbing primary ideals of commutative rings. J. Algebra Appl. 19 (2020), Article ID 2050111, 12 pages. DOI 10.1142/S021949882050111X | MR 4120088 | Zbl 1440.13008
[6] Beddani, C., Messirdi, W.: 2-prime ideals and their applications. J. Algebra Appl. 15 (2016), Article ID 1650051, 11 pages. DOI 10.1142/S0219498816500511 | MR 3454713 | Zbl 1338.13038
[7] R. W. Gilmer, Jr.: Rings in which semi-primary ideals are primary. Pac. J. Math. 12 (1962), 1273-1276. DOI 10.2140/pjm.1962.12.1273 | MR 0158898 | Zbl 0118.27201
[8] R. W. Gilmer, Jr.: Extension of results concerning rings in which semi-primary ideals are primary. Duke Math. J. 31 (1964), 73-78. DOI 10.1215/S0012-7094-64-03106-0 | MR 0162816 | Zbl 0122.29002
[9] R. W. Gilmer, Jr., J. L. Mott: Multiplication rings as rings in which ideals with prime radical are primary. Trans. Am. Math. Soc. 114 (1965), 40-52. DOI 10.1090/S0002-9947-1965-0171803-X | MR 0171803 | Zbl 0136.02402
[10] Krull, W.: Idealtheorie. Ergebnisse der Mathematik und ihrer Grenzgebiete 46. Springer, Berlin (1968), German. DOI 10.1007/978-3-642-87033-0 | MR 0229623 | Zbl 0155.36401
[11] Lam, T. Y.: Exercises in Classical Ring Theory. Problem Books in Mathematics. Springer, New York (1995). DOI 10.1007/978-1-4757-3987-9 | MR 1323431 | Zbl 0823.16001
[12] Leerawat, U., Somsup, C.: Semicommutative involution rings. J. Discrete Math. Sci. Cryptography 24 (2021), 1785-1791. DOI 10.1080/09720529.2021.1936745 | MR 4319150 | Zbl 1487.13028
[13] McCoy, N. H.: Rings and Ideals. The Carus Mathematical Monographs 8. Mathematical Association of America, Washington (1948). DOI 10.5948/9781614440086 | MR 0026038 | Zbl 0041.36406
[14] Nikandish, R., Nikmehr, M. J., Yassine, A.: More on the 2-prime ideals of commutative rings. Bull. Korean Math. Soc. 57 (2020), 117-126. DOI 10.4134/BKMS.b190094 | MR 4060186 | Zbl 1440.13018
[15] Sharp, R. Y.: Steps in Commutative Algebra. London Mathematical Society Student Texts 51. Cambridge University Press, Cambridge (2000). DOI 10.1017/CBO9780511623684 | MR 1817605 | Zbl 0969.13001
[16] Tamekkante, M., Bouba, E. M.: $(2,n)$-ideals of commutative rings. J. Algebra Appl. 18 (2019), Article ID 1950103, 12 pages. DOI 10.1142/S0219498819501032 | MR 3954657 | Zbl 1412.13005
[17] Tekir, U., Koc, S., Oral, K. H.: $n$-ideals of commutative rings. Filomat 31 (2017), 2933-2941. DOI 10.2298/FIL1710933T | MR 3639382 | Zbl 1488.13016
[18] Yassine, A., Nikmehr, M. J., Nikandish, R.: On 1-absorbing prime ideals of commutative rings. J. Algebra Appl. 20 (2021), Article ID 2150175, 12 pages. DOI 10.1142/S0219498821501759 | MR 4326079 | Zbl 1479.13006
Partner of
EuDML logo