Previous |  Up |  Next

Article

Title: The unit groups of semisimple group algebras of some non-metabelian groups of order $144$ (English)
Author: Mittal, Gaurav
Author: Sharma, Rajendra Kumar
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 148
Issue: 4
Year: 2023
Pages: 631-646
Summary lang: English
.
Category: math
.
Summary: We consider all the non-metabelian groups $G$ of order $144$ that have exponent either $36$ or $72$ and deduce the unit group $U(\mathbb {F}_qG)$ of semisimple group algebra $\mathbb {F}_qG$. Here, $q$ denotes the power of a prime, i.e., $q=p^r$ for $p$ prime and a positive integer $r$. Up to isomorphism, there are $6$ groups of order $144$ that have exponent either $36$ or $72$. Additionally, we also discuss how to simply obtain the unit groups of the semisimple group algebras of those non-metabelian groups of order $144$ that are a direct product of two nontrivial groups. In all, this paper covers the unit groups of semisimple group algebras of $17$ non-metabelian groups.\looseness -1 (English)
Keyword: unit group
Keyword: finite field
Keyword: Wedderburn decomposition
MSC: 16U60
MSC: 20C05
idZBL: Zbl 07790608
idMR: MR4673842
DOI: 10.21136/MB.2022.0067-22
.
Date available: 2023-11-23T12:41:51Z
Last updated: 2024-12-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151979
.
Reference: [1] Bakshi, G. K., Gupta, S., Passi, I. B. S.: The algebraic structure of finite metabelian group algebras.Commun. Algebra 43 (2015), 2240-2257. Zbl 1328.20004, MR 3344186, 10.1080/00927872.2014.888566
Reference: [2] Bovdi, A. A., Kurdics, J.: Lie properties of the group algebra and the nilpotency class of the group of units.J. Algebra 212 (1999), 28-64. Zbl 0936.16028, MR 1670626, 10.1006/jabr.1998.7617
Reference: [3] Dietzel, C., Mittal, G.: Summands of finite group algebras.Czech. Math. J. 71 (2021), 1011-1014. Zbl 07442469, MR 4339106, 10.21136/CMJ.2020.0171-20
Reference: [4] Ferraz, R. A.: Simple components of the center of $FG/J(FG)$.Commun. Algebra 36 (2008), 3191-3199. Zbl 1156.16019, MR 2441107, 10.1080/00927870802103503
Reference: [5] Gupta, S., Maheshwary, S.: Finite semisimple group algebra of a normally monomial group.Int. J. Algebra Comput. 29 (2019), 159-177. Zbl 1408.16021, MR 3918058, 10.1142/S0218196718500674
Reference: [6] Hurley, P., Hurley, T.: Codes from zero-divisors and units in group rings.Int. J. Inf. Coding Theory 1 (2009), 57-87. Zbl 1213.94194, MR 2747648, 10.1504/IJICOT.2009.024047
Reference: [7] Hurley, B., Hurley, T.: Group ring cryptography.Int. J. Pure Appl. Math. 69 (2011), 67-86. Zbl 1248.94071, MR 2841625
Reference: [8] James, G. D.: The Representation Theory of the Symmetric Groups.Lecture Notes in Mathematics 682. Springer, Berlin (1978). Zbl 0393.20009, MR 0513828, 10.1007/BFb0067708
Reference: [9] Khan, M., Sharma, R. K., Srivastava, J. B.: The unit group of $FS_4$.Acta Math. Hung. 118 (2008), 105-113. Zbl 1156.16024, MR 2378543, 10.1007/s10474-007-6169-4
Reference: [10] Lidl, R., Niederreiter, H.: Introduction to Finite Fields and Their Applications.Cambridge University Press, Cambridge (1994). Zbl 0820.11072, MR 1294139, 10.1017/CBO9781139172769
Reference: [11] Makhijani, N., Sharma, R. K., Srivastava, J. B.: The unit group of $\mathbb{F}_q[D_{30}]$.Serdica Math. J. 41 (2015), 185-198. Zbl 07407351, MR 3363601
Reference: [12] Makhijani, N., Sharma, R. K., Srivastava, J. B.: A note on the structure of $\mathbb{F}_{p^k}A_5/J(\mathbb{F}_{p^k}A_5)$.Acta Sci. Math. 82 (2016), 29-43. Zbl 1399.16065, MR 3526335, 10.14232/actasm-014-311-2
Reference: [13] Mittal, G., Kumar, S., Kumar, S.: A quantum secure ID-based cryptographic encryption based on group rings.S\=adhan\=a 47 (2022), Article ID 35, 16 pages. MR 4390710, 10.1007/s12046-022-01806-5
Reference: [14] Mittal, G., Sharma, R. K.: On unit group of finite group algebras of non-metabelian groups up to order 72.Math. Bohem. 146 (2021), 429-455. Zbl 07442512, MR 4336549, 10.21136/MB.2021.0116-19
Reference: [15] Mittal, G., Sharma, R. K.: On unit group of finite semisimple group algebras of non-metabelian groups of order 108.J. Algebra Comb. Discrete Struct. Appl. 8 (2021), 59-71. Zbl 07497651, MR 4263329, 10.13069/jacodesmath.935938
Reference: [16] Mittal, G., Sharma, R. K.: Computation of Wedderburn decomposition of groups algebras from their subalgebra.Bull. Korean Math. Soc. 59 (2022), 781-787. Zbl 07556746, MR 4432441, 10.4134/BKMS.b210478
Reference: [17] Mittal, G., Sharma, R. K.: Unit group of semisimple group algebras of some non-metabelian groups of order 120.Asian-Eur. J. Math. 15 (2022), Article ID 2250059, 11 pages. Zbl 07539570, MR 4404211, 10.1142/S1793557122500590
Reference: [18] Mittal, G., Sharma, R. K.: Wedderburn decomposition of a semisimple group algebra $\mathbb F_qG$ from a subalgebra of factor group of $G$.Int. Electron. J. Algebra 32 (2022), 91-100. Zbl 07561775, MR 4472725, 10.24330/ieja.1077582
Reference: [19] Pazderski, G.: The orders to which only belong metabelian groups.Math. Nachr. 95 (1980), 7-16. Zbl 0468.20018, MR 0592878, 10.1002/mana.19800950102
Reference: [20] Perlis, S., Walker, G. L.: Abelian group algebras of finite order.Trans. Am. Math. Soc. 68 (1950), 420-426. Zbl 0038.17301, MR 0034758, 10.1090/S0002-9947-1950-0034758-3
Reference: [21] Milies, C. Polcino, Sehgal, S. K.: An Introduction to Group Rings.Algebras and Applications 1. Kluwer Academic, Dordrecht (2002). Zbl 0997.20003, MR 1896125
Reference: [22] Sharma, R. K., Mittal, G.: On the unit group of semisimple group algebra $\mathbb{F}_qSL(2, \mathbb{Z}_5)$.Math. Bohem. 147 (2022), 1-10. Zbl 07547237, MR 4387464, 10.21136/MB.2021.0104-20
.

Files

Files Size Format View
MathBohem_148-2023-4_14.pdf 281.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo