Previous |  Up |  Next

Article

Title: On limit cycles of piecewise differential systems formed by arbitrary linear systems and a class of quadratic systems (English)
Author: Berbache, Aziza
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 148
Issue: 4
Year: 2023
Pages: 617-629
Summary lang: English
.
Category: math
.
Summary: We study the continuous and discontinuous planar piecewise differential systems separated by a straight line and formed by an arbitrary linear system and a class of quadratic center. We show that when these piecewise differential systems are continuous, they can have at most one limit cycle. However, when the piecewise differential systems are discontinuous, we show that they can have at most two limit cycles, and that there exist such systems with two limit cycles. Therefore, in particular, we have solved the extension of the 16th Hilbert problem to this class of differential systems. (English)
Keyword: discontinuous piecewise differential system
Keyword: continuous piecewise differential system
Keyword: first integral
Keyword: non-algebraic limit cycle
Keyword: linear system
Keyword: quadratic center
MSC: 34C05
MSC: 34C07
MSC: 37G15
idZBL: Zbl 07790607
idMR: MR4673841
DOI: 10.21136/MB.2022.0181-21
.
Date available: 2023-11-23T12:41:16Z
Last updated: 2024-12-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151978
.
Reference: [1] Artés, J. C., Llibre, J., Medrado, J. C., Teixeira, M. A.: Piecewise linear differential systems with two real saddles.Math. Comput. Simul. 95 (2014), 13-22. Zbl 07312523, MR 3127752, 10.1016/j.matcom.2013.02.007
Reference: [2] Berbache, A.: Two limit cycles for a class of discontinuous piecewise linear differential systems with two pieces.Sib. \`Electron. Mat. Izv. 17 (2020), 1488-1515. Zbl 1452.34001, MR 4229126, 10.33048/semi.2020.17.104
Reference: [3] Berbache, A.: Two explicit non-algebraic crossing limit cycles for a family of piecewise linear systems.Mem. Differ. Equ. Math. Phys. 83 (2021), 13-29. Zbl 1473.34033, MR 4281028
Reference: [4] Chen, X., Du, Z.: Limit cycles bifurcate from centers of discontinuous quadratic systems.Comput. Math. Appl. 59 (2010), 3836-3848. Zbl 1198.34044, MR 2651857, 10.1016/j.camwa.2010.04.019
Reference: [5] Braga, D. de Carvalho, Mello, L. F.: Limit cycles in a family of discontinuous piecewise linear differential systems with two zones in the plane.Nonlinear Dyn. 73 (2013), 1283-1288. Zbl 1281.34037, MR 3083780, 10.1007/s11071-013-0862-3
Reference: [6] Bernardo, M. di, Budd, C. J., Champneys, A. R., Kowalczyk, P.: Piecewise-Smooth Dynamical Systems: Theory and Applications.Appled Mathematical Sciences 163. Springer, London (2008). Zbl 1146.37003, MR 2368310, 10.1007/978-1-84628-708-4
Reference: [7] Filippov, A. F.: Differential Equations with Discontinuous Right-Hand Sides.Mathematics and Its Applications: Soviet Series 18. Kluwer Academic, Dordrecht (1988). Zbl 0664.34001, MR 1028776, 10.1007/978-94-015-7793-9
Reference: [8] Freire, E., Ponce, E., Rodrigo, F., Torres, F.: Bifurcation sets of continuous piecewise linear systems with two zones.Int. J. Bifurcation Chaos Appl. Sci. Eng. 8 (1998), 2073-2097. Zbl 0996.37065, MR 1681463, 10.1142/S0218127498001728
Reference: [9] Freire, E., Ponce, E., Torres, F.: Canonical discontinuous planar piecewise linear systems.SIAM J. Appl. Dyn. Syst. 11 (2012), 181-211. Zbl 1242.34020, MR 2902614, 10.1137/11083928X
Reference: [10] Hilbert, D.: Mathematical problems.Bull. Am. Math. Soc., New Ser. 37 (2000), 407-436. Zbl 0979.01028, MR 1779412, 10.1090/S0273-0979-00-00881-8
Reference: [11] Huan, S.-M., Yang, X.-S.: Existence of limit cycles in general planar piecewise linear systems of saddle-saddle dynamics.Nonlinear Anal., Theory Methods Appl., Ser. A 92 (2013), 82-95. Zbl 1309.34042, MR 3091110, 10.1016/j.na.2013.06.017
Reference: [12] Huan, S.-M., Yang, X.-S.: On the number of limit cycles in general planar piecewise linear systems of node-node types.J. Math. Anal. Appl. 411 (2014), 340-353. Zbl 1323.34022, MR 3118489, 10.1016/j.jmaa.2013.08.064
Reference: [13] Li, L.: Three crossing limit cycles in planar piecewise linear systems with saddle-focus type.Electron. J. Qual. Theory Differ. Equ. 2014 (2014), Article ID 70, 14 pages. Zbl 1324.34025, MR 3304196, 10.14232/ejqtde.2014.1.70
Reference: [14] Llibre, J., Mereu, A. C.: Limit cycles for discontinuous quadratic differential systems with two zones.J. Math. Anal. Appl. 413 (2014), 763-775. Zbl 1318.34049, MR 3159803, 10.1016/j.jmaa.2013.12.031
Reference: [15] Llibre, J., Ordóñez, M., Ponce, E.: On the existence and uniqueness of limit cycles in planar continuous piecewise linear systems without symmetry.Nonlinear Anal., Real World Appl. 14 (2013), 2002-2012. Zbl 1293.34047, MR 3043136, 10.1016/j.nonrwa.2013.02.004
Reference: [16] Llibre, J., Ponce, E.: Three nested limit cycles in discontinuous piecewise linear differential systems with two zones.Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 19 (2012), 325-335. Zbl 1268.34061, MR 2963277
Reference: [17] Lum, R., Chua, L. O.: Global properties of continuous piecewise linear vector fields. I: Simplest case in $R^2$.Int. J. Circuit Theory Appl. 19 (1991), 251-307. Zbl 0732.34029, 10.1002/cta.4490190305
Reference: [18] Lum, R., Chua, L. O.: Global properties of continuous piecewise linear vector fields. II: Simplest symmetric case in $R^2$.Int. J. Circuit Theory Appl. 20 (1992), 9-46. Zbl 0732.34029, 10.1002/cta.4490200103
Reference: [19] Xiong, Y.: Limit cycles bifurcations by perturbing piecewise smooth Hamiltonian systems with multiple parameters.J. Math. Anal. Appl. 421 (2015), 260-275. Zbl 1405.34026, MR 3250477, 10.1016/j.jmaa.2014.07.013
.

Files

Files Size Format View
MathBohem_148-2023-4_13.pdf 247.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo