Previous |  Up |  Next

Article

Keywords:
unit group; finite field; Wedderburn decomposition
Summary:
We consider all the non-metabelian groups $G$ of order $144$ that have exponent either $36$ or $72$ and deduce the unit group $U(\mathbb {F}_qG)$ of semisimple group algebra $\mathbb {F}_qG$. Here, $q$ denotes the power of a prime, i.e., $q=p^r$ for $p$ prime and a positive integer $r$. Up to isomorphism, there are $6$ groups of order $144$ that have exponent either $36$ or $72$. Additionally, we also discuss how to simply obtain the unit groups of the semisimple group algebras of those non-metabelian groups of order $144$ that are a direct product of two nontrivial groups. In all, this paper covers the unit groups of semisimple group algebras of $17$ non-metabelian groups.\looseness -1
References:
[1] Bakshi, G. K., Gupta, S., Passi, I. B. S.: The algebraic structure of finite metabelian group algebras. Commun. Algebra 43 (2015), 2240-2257. DOI 10.1080/00927872.2014.888566 | MR 3344186 | Zbl 1328.20004
[2] Bovdi, A. A., Kurdics, J.: Lie properties of the group algebra and the nilpotency class of the group of units. J. Algebra 212 (1999), 28-64. DOI 10.1006/jabr.1998.7617 | MR 1670626 | Zbl 0936.16028
[3] Dietzel, C., Mittal, G.: Summands of finite group algebras. Czech. Math. J. 71 (2021), 1011-1014. DOI 10.21136/CMJ.2020.0171-20 | MR 4339106 | Zbl 07442469
[4] Ferraz, R. A.: Simple components of the center of $FG/J(FG)$. Commun. Algebra 36 (2008), 3191-3199. DOI 10.1080/00927870802103503 | MR 2441107 | Zbl 1156.16019
[5] Gupta, S., Maheshwary, S.: Finite semisimple group algebra of a normally monomial group. Int. J. Algebra Comput. 29 (2019), 159-177. DOI 10.1142/S0218196718500674 | MR 3918058 | Zbl 1408.16021
[6] Hurley, P., Hurley, T.: Codes from zero-divisors and units in group rings. Int. J. Inf. Coding Theory 1 (2009), 57-87. DOI 10.1504/IJICOT.2009.024047 | MR 2747648 | Zbl 1213.94194
[7] Hurley, B., Hurley, T.: Group ring cryptography. Int. J. Pure Appl. Math. 69 (2011), 67-86. MR 2841625 | Zbl 1248.94071
[8] James, G. D.: The Representation Theory of the Symmetric Groups. Lecture Notes in Mathematics 682. Springer, Berlin (1978). DOI 10.1007/BFb0067708 | MR 0513828 | Zbl 0393.20009
[9] Khan, M., Sharma, R. K., Srivastava, J. B.: The unit group of $FS_4$. Acta Math. Hung. 118 (2008), 105-113. DOI 10.1007/s10474-007-6169-4 | MR 2378543 | Zbl 1156.16024
[10] Lidl, R., Niederreiter, H.: Introduction to Finite Fields and Their Applications. Cambridge University Press, Cambridge (1994). DOI 10.1017/CBO9781139172769 | MR 1294139 | Zbl 0820.11072
[11] Makhijani, N., Sharma, R. K., Srivastava, J. B.: The unit group of $\mathbb{F}_q[D_{30}]$. Serdica Math. J. 41 (2015), 185-198. MR 3363601 | Zbl 07407351
[12] Makhijani, N., Sharma, R. K., Srivastava, J. B.: A note on the structure of $\mathbb{F}_{p^k}A_5/J(\mathbb{F}_{p^k}A_5)$. Acta Sci. Math. 82 (2016), 29-43. DOI 10.14232/actasm-014-311-2 | MR 3526335 | Zbl 1399.16065
[13] Mittal, G., Kumar, S., Kumar, S.: A quantum secure ID-based cryptographic encryption based on group rings. S\=adhan\=a 47 (2022), Article ID 35, 16 pages. DOI 10.1007/s12046-022-01806-5 | MR 4390710
[14] Mittal, G., Sharma, R. K.: On unit group of finite group algebras of non-metabelian groups up to order 72. Math. Bohem. 146 (2021), 429-455. DOI 10.21136/MB.2021.0116-19 | MR 4336549 | Zbl 07442512
[15] Mittal, G., Sharma, R. K.: On unit group of finite semisimple group algebras of non-metabelian groups of order 108. J. Algebra Comb. Discrete Struct. Appl. 8 (2021), 59-71. DOI 10.13069/jacodesmath.935938 | MR 4263329 | Zbl 07497651
[16] Mittal, G., Sharma, R. K.: Computation of Wedderburn decomposition of groups algebras from their subalgebra. Bull. Korean Math. Soc. 59 (2022), 781-787. DOI 10.4134/BKMS.b210478 | MR 4432441 | Zbl 07556746
[17] Mittal, G., Sharma, R. K.: Unit group of semisimple group algebras of some non-metabelian groups of order 120. Asian-Eur. J. Math. 15 (2022), Article ID 2250059, 11 pages. DOI 10.1142/S1793557122500590 | MR 4404211 | Zbl 07539570
[18] Mittal, G., Sharma, R. K.: Wedderburn decomposition of a semisimple group algebra $\mathbb F_qG$ from a subalgebra of factor group of $G$. Int. Electron. J. Algebra 32 (2022), 91-100. DOI 10.24330/ieja.1077582 | MR 4472725 | Zbl 07561775
[19] Pazderski, G.: The orders to which only belong metabelian groups. Math. Nachr. 95 (1980), 7-16. DOI 10.1002/mana.19800950102 | MR 0592878 | Zbl 0468.20018
[20] Perlis, S., Walker, G. L.: Abelian group algebras of finite order. Trans. Am. Math. Soc. 68 (1950), 420-426. DOI 10.1090/S0002-9947-1950-0034758-3 | MR 0034758 | Zbl 0038.17301
[21] Milies, C. Polcino, Sehgal, S. K.: An Introduction to Group Rings. Algebras and Applications 1. Kluwer Academic, Dordrecht (2002). MR 1896125 | Zbl 0997.20003
[22] Sharma, R. K., Mittal, G.: On the unit group of semisimple group algebra $\mathbb{F}_qSL(2, \mathbb{Z}_5)$. Math. Bohem. 147 (2022), 1-10. DOI 10.21136/MB.2021.0104-20 | MR 4387464 | Zbl 07547237
Partner of
EuDML logo