[1] Borel, A.:
Cohomologie de ${SL}_n$ et valeurs de fonctions zeta aux points entiers. Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 4 (1977), 613-636 French.
MR 0506168 |
Zbl 0382.57027
[8] Flach, M.:
The equivariant Tamagawa number conjecture: A survey. Stark's Conjectures: Recent Work and New Directions Contemporary Mathematics 358. AMS, Providence (2004), 79-125.
DOI 10.1090/conm/358 |
MR 2088713 |
Zbl 1070.11025
[9] Ghate, E.:
Vandiver's conjecture via $K$-theory. Cyclotomic Fields and Related Topics Bhaskaracharya Pratishthana, Pune (2000), 285-298.
MR 1802389 |
Zbl 1048.11083
[11] Johnson-Leung, J.:
The local equivariant Tamagawa number conjecture for almost abelian extensions. Women in Numbers 2: Research Directions in Number Theory Contemporary Mathematics 606. AMS, Providence (2013), 1-27.
DOI 10.1090/conm/606 |
MR 3204289 |
Zbl 1286.11176
[16] Neukirch, J.:
The Beilinson conjecture for algebraic number fields. Beilinson's Conjectures on Special Values of $L$-Functions Perspectives in Mathematics 4. Academic Press, Boston (1988), 193-247.
MR 0944995 |
Zbl 0651.12009
[20] Siegel, C. L.:
Über die Fourierschen Koeffizienten von Modulformen. Nachr. Akad. Wiss. Göttingen, II. Math.-Phys. Kl. 1970 (1970), 15-56 German.
MR 0285488 |
Zbl 0225.10031
[27] Tate, J.:
Les conjectures de Stark sur les fonctions $L$ d'Artin en $s=0$. Progress in Mathematics 47. Birkhäuser, Boston (1984), French.
MR 0782485 |
Zbl 0545.12009