Previous |  Up |  Next

Article

Title: A twisted class number formula and Gross's special units over an imaginary quadratic field (English)
Author: El Boukhari, Saad
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 73
Issue: 4
Year: 2023
Pages: 1333-1347
Summary lang: English
.
Category: math
.
Summary: Let $F/k$ be a finite abelian extension of number fields with $k$ imaginary quadratic. Let $O_F$ be the ring of integers of $F$ and $n\geq 2$ a rational integer. We construct a submodule in the higher odd-degree algebraic $K$-groups of $O_F$ using corresponding Gross's special elements. We show that this submodule is of finite index and prove that this index can be computed using the higher ``twisted'' class number of $F$, which is the cardinal of the finite algebraic $K$-group $K_{2n-2}(O_F)$. (English)
Keyword: algebraic $K$-theory
Keyword: Dedekind zeta function
Keyword: Artin $L$-function
Keyword: Beilinson regulator
Keyword: generalized index
Keyword: Lichtenbaum conjecture
MSC: 11R70
MSC: 19F27
idZBL: Zbl 07790577
DOI: 10.21136/CMJ.2023.0067-23
.
Date available: 2023-11-23T12:30:28Z
Last updated: 2024-12-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151963
.
Reference: [1] Borel, A.: Cohomologie de ${SL}_n$ et valeurs de fonctions zeta aux points entiers.Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 4 (1977), 613-636 French. Zbl 0382.57027, MR 0506168
Reference: [2] Bourbaki, N.: Elements of Mathematics: Commutative Algebra.Hermann, Paris (1972). Zbl 0279.13001, MR 0360549
Reference: [3] Gil, J. I. Burgos: The Regulators of Beilinson and Borel.CRM Monograph Series 15. AMS, Providence (2002). Zbl 0994.19003, MR 1869655, 10.1090/crmm/015
Reference: [4] Deninger, C.: Higher regulators and Hecke $L$-series of imaginary quadratic fields. II.Ann. Math. (2) 132 (1990), 131-158. Zbl 0721.14005, MR 1059937, 10.2307/1971502
Reference: [5] Boukhari, S. El: Fitting ideals of isotypic parts of even $K$-groups.Manuscr. Math. 157 (2018), 23-49. Zbl 1414.11138, MR 3845757, 10.1007/s00229-017-0991-y
Reference: [6] Boukhari, S. El: Higher Stickelberger ideals and even $K$-groups.Proc. Am. Math. Soc. 150 (2022), 3231-3239. Zbl 1506.11147, MR 4439448, 10.1090/proc/15837
Reference: [7] Boukhari, S. El: On a Gross conjecture over imaginary quadratic fields.Available at https://arxiv.org/abs/2302.04049 (2023), 17 pages. MR 4749058, 10.48550/arXiv.2302.04049
Reference: [8] Flach, M.: The equivariant Tamagawa number conjecture: A survey.Stark's Conjectures: Recent Work and New Directions Contemporary Mathematics 358. AMS, Providence (2004), 79-125. Zbl 1070.11025, MR 2088713, 10.1090/conm/358
Reference: [9] Ghate, E.: Vandiver's conjecture via $K$-theory.Cyclotomic Fields and Related Topics Bhaskaracharya Pratishthana, Pune (2000), 285-298. Zbl 1048.11083, MR 1802389
Reference: [10] Gross, B. H.: On the values of Artin $L$-functions.Pure Appl. Math. Q. 1 (2005), 1-13. Zbl 1169.11050, MR 2154331, 10.4310/PAMQ.2005.v1.n1.a1
Reference: [11] Johnson-Leung, J.: The local equivariant Tamagawa number conjecture for almost abelian extensions.Women in Numbers 2: Research Directions in Number Theory Contemporary Mathematics 606. AMS, Providence (2013), 1-27. Zbl 1286.11176, MR 3204289, 10.1090/conm/606
Reference: [12] Klingen, H.: Über die Werte der Dedekindschen Zetafunktion.Math. Ann. 145 (1962), 265-272 German. Zbl 0101.03002, MR 0133304, 10.1007/BF01451369
Reference: [13] Kolster, M., Do, T. Nguyen Quang, Fleckinger, V.: Twisted $S$-units, $p$-adic class number formulas, and the Lichtenbaum conjectures.Duke Math. J. 84 (1996), 679-717. Zbl 0863.19003, MR 1408541, 10.1215/S0012-7094-96-08421-5
Reference: [14] Kurihara, M.: Some remarks on conjectures about cyclotomic fields and $K$-groups of $\Bbb{Z}$.Compos. Math. 81 (1992), 223-236. Zbl 0747.11055, MR 1145807, 0747.11055
Reference: [15] Mazur, B., Wiles, A.: Class fields of abelian extensions of $\Bbb{Q}$.Invent. Math. 76 (1984), 179-331. Zbl 0545.12005, MR 0742853, 10.1007/BF01388599
Reference: [16] Neukirch, J.: The Beilinson conjecture for algebraic number fields.Beilinson's Conjectures on Special Values of $L$-Functions Perspectives in Mathematics 4. Academic Press, Boston (1988), 193-247. Zbl 0651.12009, MR 0944995
Reference: [17] Neukirch, J., Schmidt, A., Wingberg, K.: Cohomology of Number Fields.Grundlehren der Mathematischen Wissenschaften 323. Springer, Berlin (2000). Zbl 0948.11001, MR 1737196, 10.1007/978-3-540-37889-1
Reference: [18] Nickel, A.: Leading terms of Artin $L$-series at negative integers and annihilation of higher $K$-groups.Math. Proc. Camb. Philos. Soc. 151 (2011), 1-22. Zbl 1254.11096, MR 2801311, 10.1017/S0305004111000193
Reference: [19] Rapoport, M., Schappacher, N., (eds.), P. Schneider: Beilinson's Conjectures on Special Values of $L$-Functions.Perspectives in Mathematics 4. Academic Press, Boston (1988). Zbl 0635.00005, MR 0944987, 10.1016/c2013-0-11352-9
Reference: [20] Siegel, C. L.: Über die Fourierschen Koeffizienten von Modulformen.Nachr. Akad. Wiss. Göttingen, II. Math.-Phys. Kl. 1970 (1970), 15-56 German. Zbl 0225.10031, MR 0285488
Reference: [21] Sinnott, W.: On the Stickelberger ideal and the circular units of an abelian field.Invent. Math. 62 (1980), 181-234. Zbl 0465.12001, MR 0595586, 10.1007/BF01389158
Reference: [22] Snaith, V. P.: Stark's conjecture and new Stickelberger phenomena.Can. J. Math. 58 (2006), 419-448. Zbl 1215.11111, MR 2209286, 10.4153/CJM-2006-018-5
Reference: [23] Soulé, C.: $K$-théorie des anneaux d'entiers de corps de nombres et cohomologie étale.Invent. Math. 55 (1979), 251-295 French. Zbl 0437.12008, MR 0553999, 10.1007/BF01406843
Reference: [24] Soulé, C.: On higher $p$-adic regulators.Algebraic $K$-Theory Lecture Notes in Mathematics 854. Springer, Berlin (1981), 372-401. Zbl 0488.12008, MR 0618313, 10.1007/BFb0089530
Reference: [25] Soulé, C.: Perfect forms and Vandiver conjecture.J. Reine Angew. Math. 517 (1999), 209-221. Zbl 1012.11094, MR 1728540, 10.1515/crll.1999.095
Reference: [26] Sun, C.: The Lichtenbaum conjecture for abelian extension of imaginary quadratic fields.Available at https://arxiv.org/abs/2112.12314 (2021), 17 pages. 10.48550/arXiv.2112.12314
Reference: [27] Tate, J.: Les conjectures de Stark sur les fonctions $L$ d'Artin en $s=0$.Progress in Mathematics 47. Birkhäuser, Boston (1984), French. Zbl 0545.12009, MR 0782485
Reference: [28] Viguié, S.: Index-modules and applications.Manuscr. Math. 136 (2011), 445-460. Zbl 1264.11093, MR 2844820, 10.1007/s00229-011-0452-y
Reference: [29] Voevodsky, V.: On motivic cohomology with $\Bbb{Z}/l$-coefficients.Ann. Math. (2) 174 (2011), 401-438. Zbl 1236.14026, MR 2811603, 10.4007/annals.2011.174.1.11
Reference: [30] Wiles, A.: The Iwasawa conjecture for totally real fields.Ann. Math. (2) 131 (1990), 493-540. Zbl 0719.11071, MR 1053488, 10.2307/1971468
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo