Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
finite group; $p$-supersoluble group, $p$-nilpotent group, $\Pi $-property
Summary:
Let $H$ be a subgroup of a finite group $G$. We say that $H$ satisfies the $\Pi $-property in $G$ if for any chief factor $L / K$ of $G$, $| G / K : N_{G / K} ( HK/K\cap L/K )|$ is a $\pi (HK/K\cap L/K) $-number. We study the influence of some $p$-subgroups of $G$ satisfying the $\Pi $-property on the structure of $G$, and generalize some known results.
References:
[1] Ahmad, A. Y. Alsheik, Jaraden, J. J., Skiba, A. N.: On $\mathcal U_c$-normal subgroups of finite groups. Algebra Colloq. 14 (2007), 25-36. DOI 10.1142/S1005386707000041 | MR 2278107 | Zbl 1126.20012
[2] Chen, Z.: On a theorem of Srinivasan. J. Southwest Teach. Univ., Ser. B 12 (1987), 1-4 Chinese. Zbl 0732.20008
[3] Doerk, K., Hawkes, T.: Finite Soluble Groups. De Gruyter Expositions in Mathematics 4. Walter de Gruyter, Berlin (1992). DOI 10.1515/9783110870138 | MR 1169099 | Zbl 0753.20001
[4] Ezquerro, L. M., Li, X., Li, Y.: Finite groups with some CAP-subgroups. Rend. Semin. Mat. Univ. Padova 131 (2014), 77-87. DOI 10.4171/RSMUP/131-6 | MR 3217752 | Zbl 1317.20013
[5] Gorenstein, D.: Finite Groups. Chelsea Publishing, New York (1980). MR 0569209 | Zbl 0463.20012
[6] Guo, W.: Structure Theory for Canonical Classes of Finite Groups. Springer, Berlin (2015). DOI 10.1007/978-3-662-45747-4 | MR 3331254 | Zbl 1343.20021
[7] Guo, W., Shum, K.-P., Skiba, A. N.: $X$-quasinormal subgroups. Sib. Math. J. 48 (2007), 593-605. DOI 10.1007/s11202-007-0061-x | MR 2355370 | Zbl 1153.20304
[8] Huppert, B.: Endliche Gruppen. I. Die Grundlehren der Mathematischen Wissenschaften 134. Springer, Berlin (1967), German. DOI 10.1007/978-3-642-64981-3 | MR 0224703 | Zbl 0217.07201
[9] Isaacs, I. M.: Finite Group Theory. Graduate Studies in Mathematics 92. AMS, Providence (2008). DOI 10.1090/gsm/092 | MR 2426855 | Zbl 1169.20001
[10] Isaacs, I. M.: Semipermutable $\pi$-subgroups. Arch. Math. 102 (2014), 1-6. DOI 10.1007/s00013-013-0604-2 | MR 3154151 | Zbl 1297.20018
[11] Kegel, O. H.: Sylow-Gruppen und Subnormalteiler endlicher Gruppen. Math. Z. 78 (1962), 205-221 German. DOI 10.1007/BF01195169 | MR 0147527 | Zbl 0102.26802
[12] Li, B.: On $\Pi$-property and $\Pi$-normality of subgroups of finite groups. J. Algebra 334 (2011), 321-337. DOI 10.1016/j.jalgebra.2010.12.018 | MR 2787667 | Zbl 1248.20020
[13] Li, S., He, X.: On normally embedded subgroups of prime power order in finite groups. Commun. Algebra 36 (2008), 2333-2340. DOI 10.1080/00927870701509370 | MR 2418390 | Zbl 1146.20015
[14] Li, S., Shen, Z., Liu, J., Liu, X.: The influence of SS-quasinormality of some subgroups on the structure of finite groups. J. Algebra 319 (2008), 4275-4287. DOI 10.1016/j.jalgebra.2008.01.030 | MR 2407900 | Zbl 1152.20019
[15] Li, Y. M., He, X. L., Wang, Y. M.: On $s$-semipermutable subgroups of finite groups. Acta Math. Sin., Engl. Ser. 26 (2010), 2215-2222. DOI 10.1007/s10114-010-7609-6 | MR 2727302 | Zbl 1209.20018
[16] Li, Y., Qiao, S., Su, N., Wang, Y.: On weakly $s$-semipermutable subgroups of finite groups. J. Algebra 371 (2012), 250-261. DOI 10.1016/j.jalgebra.2012.06.025 | MR 2975395 | Zbl 1269.20020
[17] Liu, J., Li, S., Shen, Z., Liu, X.: Finite groups with some CAP-subgroups. Indian J. Pure Appl. Math. 42 (2011), 145-156. DOI 10.1007/s13226-011-0009-5 | MR 2823263 | Zbl 1309.20011
[18] Lu, J., Li, S.: On $S$-semipermutable subgroups of finite groups. J. Math. Res. Expo. 29 (2009), 985-991. DOI 10.3770/j.issn:1000-341X.2009.06.005 | MR 2590215 | Zbl 1212.20037
[19] Peacock, R. M.: Groups with a cyclic Sylow subgroup. J. Algebra 56 (1979), 506-509. DOI 10.1016/0021-8693(79)90353-3 | MR 0528591 | Zbl 0399.20012
Partner of
EuDML logo