Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
evolution variational inequalities; play operator; sweeping processes; functions of bounded variation; prox-regular set
Summary:
We prove that the vector play operator with a uniformly prox-regular characteristic set of constraints is continuous with respect to the ${BV}$-norm and to the ${BV}$-strict metric in the space of rectifiable curves, i.e., in the space of continuous functions of bounded variation. We do not assume any further regularity of the characteristic set. We also prove that the non-convex play operator is rate independent.
References:
[1] Benabdellah, H.: Existence of solutions to the nonconvex sweeping process. J. Differ. Equations 164 (2000), 286-295. DOI 10.1006/jdeq.1999.3756 | MR 1765576 | Zbl 0957.34061
[2] Bounkhel, M., Thibault, L.: Nonconvex sweeping process and prox-regularity in Hilbert space. J. Nonlinear Convex Anal. 6 (2005), 359-374. MR 2159846 | Zbl 1086.49016
[3] Brézis, H.: Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland Mathematical Studies 5. North-Holland, Amsterdam (1973), French. DOI 10.1016/s0304-0208(08)x7125-7 | MR 0348562 | Zbl 0252.47055
[4] Brokate, M., Krejčí, P., Schnabel, H.: On uniqueness in evolution quasivariational inequalities. J. Convex Anal. 11 (2004), 111-130. MR 2159467 | Zbl 1061.49006
[5] Brokate, M., Sprekels, J.: Hysteresis and Phase Transitions. Applied Mathematical Sciences 121. Springer, New York (1996). DOI 10.1007/978-1-4612-4048-8 | MR 1411908 | Zbl 0951.74002
[6] Castaing, C., Marques, M. D. P. Monteiro: Evolution problems associated with nonconvex closed moving sets with bounded variation. Port. Math. 53 (1996), 73-87. MR 1384501 | Zbl 0848.35052
[7] Clarke, F. H., Stern, R. J., Wolenski, P. R.: Proximal smoothness and the lower-$C^2$ property. J. Convex Anal. 2 (1995), 117-144. MR 1363364 | Zbl 0881.49008
[8] Colombo, G., Goncharov, V. V.: The sweeping processes without convexity. Set-Valued Anal. 7 (1999), 357-374. DOI 10.1023/A:1008774529556 | MR 1756914 | Zbl 0957.34060
[9] Colombo, G., Marques, M. D. P. Monteiro: Sweeping by a continuous prox-regular set. J. Differ. Equations 187 (2003), 46-62. DOI 10.1016/S0022-0396(02)00021-9 | MR 1946545 | Zbl 1029.34052
[10] Colombo, G., Thibault, L.: Prox-regular sets and applications. Handbook of Nonconvex Analysis and Applications International Press, Somerville (2010), 99-182. MR 2768810 | Zbl 1221.49001
[11] J. Diestel, J. J. Uhl, Jr.: Vector Measures. Mathematical Surveys 15. AMS, Providence (1977). DOI 10.1090/surv/015 | MR 0453964 | Zbl 0369.46039
[12] Dinculeanu, N.: Vector Measures. International Series of Monographs in Pure and Applied Mathematics 95. Pergamon Press, Berlin (1967). MR 0206190 | Zbl 0142.10502
[13] Edmond, J. F., Thibault, L.: BV solutions of nonconvex sweeping process differential inclusions with perturbation. J. Differ. Equations 226 (2006), 135-179. DOI 10.1016/j.jde.2005.12.005 | MR 2232433 | Zbl 1110.34038
[14] Federer, H.: Curvature measures. Trans. Am. Math. Soc. 93 (1959), 418-491. DOI 10.1090/S0002-9947-1959-0110078-1 | MR 0110078 | Zbl 0089.38402
[15] Federer, H.: Geometric Measure Theory. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen 153. Springer, Berlin (1969). DOI 10.1007/978-3-642-62010-2 | MR 0257325 | Zbl 0176.00801
[16] Klein, O., Recupero, V.: Hausdorff metric BV discontinuity of sweeping processes. J. Phys., Conf. Ser. 727 (2016), Article ID 012006, 12 pages. DOI 10.1088/1742-6596/727/1/012006 | MR 3566835 | Zbl 1366.46062
[17] Kopfová, J., Recupero, V.: $BV$-norm continuity of sweeping processes driven by a set with constant shape. J. Differ. Equations 261 (2016), 5875-5899. DOI 10.1016/j.jde.2016.08.025 | MR 3548274 | Zbl 1354.34112
[18] Krasnosel'skij, M. A., Pokrovskij, A. V.: Systems with Hysteresis. Springer, Berlin (1989). DOI 10.1007/978-3-642-61302-9 | MR 0987431 | Zbl 0665.47038
[19] Krejčí, P.: Vector hysteresis models. Eur. J. Appl. Math. 2 (1991), 281-292. DOI 10.1017/S0956792500000541 | MR 1123144 | Zbl 0754.73015
[20] Krejčí, P.: Hysteresis, Convexity and Dissipation in Hyperbolic Equations. GAKUTO International Series. Mathematical Sciences and Applications 8. Gakkotosho, Tokyo (1996). MR 2466538 | Zbl 1187.35003
[21] Krejčí, P., Monteiro, G. A., Recupero, V.: Explicit and implicit non-convex sweeping processes in the space of absolutely continuous functions. Appl. Math. Optim. 84, Suppl. 2 (2021), 1477-1504. DOI 10.1007/s00245-021-09801-8 | MR 4356901 | Zbl 1495.34087
[22] Krejčí, P., Monteiro, G. A., Recupero, V.: Non-convex sweeping processes in the space of regulated functions. Commun. Pure Appl. Anal. 21 (2022), 2999-3029. DOI 10.3934/cpaa.2022087 | MR 4484114 | Zbl 07606668
[23] Krejčí, P., Roche, T.: Lipschitz continuous data dependence of sweeping processes in BV spaces. Discrete Contin. Dyn. Syst., Ser. B 15 (2011), 637-650. DOI 10.3934/dcdsb.2011.15.637 | MR 2774131 | Zbl 1214.49022
[24] Lang, S.: Real and Functional Analysis. Graduate Texts in Mathematics 142. Springer, New York (1993). DOI 10.1007/978-1-4612-0897-6 | MR 1216137 | Zbl 0831.46001
[25] Mayergoyz, I. D.: Mathematical Models of Hysteresis. Springer, New York (1991). DOI 10.1007/978-1-4612-3028-1 | MR 1083150 | Zbl 0723.73003
[26] Mielke, A., Roubíček, T.: Rate-Independent Systems: Theory and Applications. Applied Mathematical Sciences 193. Springer, New York (2015). DOI 10.1007/978-1-4939-2706-7 | MR 3380972 | Zbl 1339.35006
[27] Poliquin, R. A., Rockafellar, R. T., Thibault, L.: Local differentiability of distance functions. Trans. Am. Math. Soc. 352 (2000), 5231-5249. DOI 10.1090/S0002-9947-00-02550-2 | MR 1694378 | Zbl 0960.49018
[28] Recupero, V.: The play operator on the rectifiable curves in a Hilbert space. Math. Methods Appl. Sci. 31 (2008), 1283-1295. DOI 10.1002/mma.968 | MR 2431427 | Zbl 1140.74021
[29] Recupero, V.: Sobolev and strict continuity of general hysteresis operators. Math. Methods Appl. Sci. 32 (2009), 2003-2018. DOI 10.1002/mma.1124 | MR 2560936 | Zbl 1214.47081
[30] Recupero, V.: $BV$ solutions of rate independent variational inequalities. Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 10 (2011), 269-315. DOI 10.2422/2036-2145.2011.2.02 | MR 2856149 | Zbl 1229.49012
[31] Recupero, V.: $BV$ continuous sweeping processes. J. Differ. Equations 259 (2015), 4253-4272. DOI 10.1016/j.jde.2015.05.019 | MR 3369277 | Zbl 1322.49014
[32] Recupero, V.: Sweeping processes and rate independence. J. Convex Anal. 23 (2016), 921-946. MR 3533181 | Zbl 1357.34103
[33] Recupero, V.: Convex valued geodesics and applications to sweeping processes with bounded retraction. J. Convex Anal. 27 (2020), 535-556. MR 4058035 | Zbl 1444.34075
[34] Venel, J.: A numerical scheme for a class of sweeping processes. Numer. Math. 118 (2011), 367-400. DOI 10.1007/s00211-010-0329-0 | MR 2800713 | Zbl 1222.65064
[35] Vial, J.-P.: Strong and weak convexity of sets and functions. Math. Oper. Res. 8 (1983), 231-259. DOI 10.1287/moor.8.2.231 | MR 0707055 | Zbl 0526.90077
[36] Visintin, A.: Differential Models of Hysteresis. Applied Mathematical Sciences 111. Springer, Berlin (1994). DOI 10.1007/978-3-662-11557-2 | MR 1329094 | Zbl 0820.35004
Partner of
EuDML logo