[1] Janaideh, M. Al, Krejčí, P.:
An inversion formula for a Prandtl-Ishlinskii operator with time dependent thresholds. Phys. B 406 (2011), 1528-1532.
DOI 10.1016/j.physb.2011.01.062
[2] Janaideh, M. Al, Rakotondrabe, M.:
Precision motion control of a piezoelectric cantilever positioning system with rate-dependent hysteresis nonlinearities. Nonlinear Dyn. 104 (2021), 3385-3405.
DOI 10.1007/s11071-021-06460-w
[3] Janaideh, M. Al, Xu, R., Tan, X.:
Adaptive estimation of play radii for a Prandtl-Ishlinskii hysteresis operator. IEEE Trans. Control Syst. Technol. 29 (2021), 2687-2695.
DOI 10.1109/TCST.2020.3046019 |
MR 4583252
[4] Davino, D., Giustiniani, A., Visone, C.:
Magnetoelastic energy harvesting: Modeling and experiments. Smart Actuation and Sensing Systems: Recent Advances and Future Challenges IntechOpen, London (2012), 487-512.
DOI 10.5772/50892
[5] Iyer, R. V., Tan, X., Krishnaprasad, P. S.:
Approximate inversion of the Preisach hysteresis operator with application to control of smart actuators. IEEE Trans. Autom. Control 50 (2005), 798-810.
DOI 10.1109/TAC.2005.849205 |
MR 2141996 |
Zbl 1365.93207
[6] Khasawneh, H. J., Abo-Hammour, Z. S., Saaideh, M. I. Al, Momani, S. M.:
Identification of hysteresis models using real-coded genetic algorithms. Eur. Phys. J. Plus 134 (2019), Article ID 507, 17 pages.
DOI 10.1140/epjp/i2019-12883-7
[7] Krejčí, P.:
Hysteresis, Convexity and Dissipation in Hyperbolic Equations. GAKUTO International Series. Mathematical Sciences and Applications 8. Gakkotosho, Tokyo (1996).
MR 2466538 |
Zbl 1187.35003
[10] Krejčí, P., Kuhnen, K.:
Inverse control of systems with hysteresis and creep. IEE Proc., Control Theory Appl. 148 (2001), 185-192.
DOI 10.1049/ip-cta:20010375
[14] Kuhnen, K., Krejčí, P.:
Compensation of complex hysteresis and creep effects in piezoelectrically actuated systems: A new Preisach modeling approach. IEEE Trans. Autom. Control 54 (2009), 537-550.
DOI 10.1109/TAC.2009.2012984 |
MR 2191546 |
Zbl 1367.74037
[15] Leang, K. K., Devasia, S.:
Design of hysteresis-compensating iterative learning control for piezo-positioners: Application to atomic force microscopes. Mechatron. 16 (2006), 141-158.
DOI 10.1016/j.mechatronics.2005.11.006
[17] Visone, C.:
Hysteresis modelling and compensation for smart sensors and actuators. J. Phys., Conf. Ser. 138 (2008), Article ID 012028, 24 pages.
DOI 10.1088/1742-6596/138/1/012028