Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
hysteresis; Prandtl-Ishlinskii operator; inverse rate-dependent Prandtl-Ishlinskii operator
Summary:
In the past years, we observed an increased interest in rate-dependent hysteresis models to characterize complex time-dependent nonlinearities in smart actuators. A natural way to include rate-dependence to the Prandtl-Ishlinskii model is to consider it as a linear combination of play operators whose thresholds are functions of time. In this work, we propose the extension of the class of rate-dependent Prandtl-Ishlinskii operators to the case of a whole continuum of play operators with time-dependent thresholds. We prove the existence of an analytical inversion formula, and illustrate its applicability in the study of error bounds for inverse compensation.
References:
[1] Janaideh, M. Al, Krejčí, P.: An inversion formula for a Prandtl-Ishlinskii operator with time dependent thresholds. Phys. B 406 (2011), 1528-1532. DOI 10.1016/j.physb.2011.01.062
[2] Janaideh, M. Al, Rakotondrabe, M.: Precision motion control of a piezoelectric cantilever positioning system with rate-dependent hysteresis nonlinearities. Nonlinear Dyn. 104 (2021), 3385-3405. DOI 10.1007/s11071-021-06460-w
[3] Janaideh, M. Al, Xu, R., Tan, X.: Adaptive estimation of play radii for a Prandtl-Ishlinskii hysteresis operator. IEEE Trans. Control Syst. Technol. 29 (2021), 2687-2695. DOI 10.1109/TCST.2020.3046019 | MR 4583252
[4] Davino, D., Giustiniani, A., Visone, C.: Magnetoelastic energy harvesting: Modeling and experiments. Smart Actuation and Sensing Systems: Recent Advances and Future Challenges IntechOpen, London (2012), 487-512. DOI 10.5772/50892
[5] Iyer, R. V., Tan, X., Krishnaprasad, P. S.: Approximate inversion of the Preisach hysteresis operator with application to control of smart actuators. IEEE Trans. Autom. Control 50 (2005), 798-810. DOI 10.1109/TAC.2005.849205 | MR 2141996 | Zbl 1365.93207
[6] Khasawneh, H. J., Abo-Hammour, Z. S., Saaideh, M. I. Al, Momani, S. M.: Identification of hysteresis models using real-coded genetic algorithms. Eur. Phys. J. Plus 134 (2019), Article ID 507, 17 pages. DOI 10.1140/epjp/i2019-12883-7
[7] Krejčí, P.: Hysteresis, Convexity and Dissipation in Hyperbolic Equations. GAKUTO International Series. Mathematical Sciences and Applications 8. Gakkotosho, Tokyo (1996). MR 2466538 | Zbl 1187.35003
[8] Krejčí, P.: The Kurzweil integral and hysteresis. J. Phys., Conf. Ser. 55 (2006), 144-154. DOI 10.1088/1742-6596/55/1/014
[9] Krejčí, P., Janaideh, M. Al, Deasy, F.: Inversion of hysteresis and creep operators. Phys. B 407 (2012), 1354-1356. DOI 10.1016/j.physb.2011.06.020
[10] Krejčí, P., Kuhnen, K.: Inverse control of systems with hysteresis and creep. IEE Proc., Control Theory Appl. 148 (2001), 185-192. DOI 10.1049/ip-cta:20010375
[11] Krejčí, P., Lamba, H., Melnik, S., Rachinskii, D.: Kurzweil integral representation of interacting Prandtl-Ishlinskii operators. Discrete Contin. Dyn. Syst., Ser. B 20 (2015), 2949-2965. DOI 10.3934/dcdsb.2015.20.2949 | MR 3402678 | Zbl 1335.47043
[12] Krejčí, P., Monteiro, G. A.: Inverse parameter-dependent Preisach operator in thermo-piezoelectricity modeling. Discrete Contin. Dyn. Syst., Ser. B 24 (2019), 3051-3066. DOI 10.3934/dcdsb.2018299 | MR 3986192 | Zbl 1421.34030
[13] Krejčí, P., Monteiro, G. A.: Oscillations of a temperature-dependent piezoelectric rod. Nonlinear Anal., Real World Appl. 46 (2019), 403-420. DOI 10.1016/j.nonrwa.2018.10.001 | MR 3887137 | Zbl 1461.74025
[14] Kuhnen, K., Krejčí, P.: Compensation of complex hysteresis and creep effects in piezoelectrically actuated systems: A new Preisach modeling approach. IEEE Trans. Autom. Control 54 (2009), 537-550. DOI 10.1109/TAC.2009.2012984 | MR 2191546 | Zbl 1367.74037
[15] Leang, K. K., Devasia, S.: Design of hysteresis-compensating iterative learning control for piezo-positioners: Application to atomic force microscopes. Mechatron. 16 (2006), 141-158. DOI 10.1016/j.mechatronics.2005.11.006
[16] Tan, X., Baras, J. S.: Modeling and control of hysteresis in magnetostrictive actuators. Automatica 40 (2004), 1469-1480. DOI 10.1016/j.automatica.2004.04.006 | MR 2153812 | Zbl 1055.93538
[17] Visone, C.: Hysteresis modelling and compensation for smart sensors and actuators. J. Phys., Conf. Ser. 138 (2008), Article ID 012028, 24 pages. DOI 10.1088/1742-6596/138/1/012028
Partner of
EuDML logo