Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
macroeconomic model; rational expectation; hysteresis play operator; equilibrium point; path-dependence; sticky inflation
Summary:
We analyze a simple macroeconomic model where rational inflation expectations are replaced by a boundedly rational, and genuinely sticky, response to changes in the actual inflation rate. The stickiness is introduced in a novel way using a mathematical operator that is amenable to rigorous analysis. We prove that, when exogenous noise is absent from the system, the unique equilibrium of the rational expectations model is replaced by an entire line segment of possible equilibria with the one chosen depending, in a deterministic way, upon the previous states of the system. The agents are sufficiently far-removed from the rational expectations paradigm that problems of indeterminacy do not arise.\looseness -1 \endgraf The response to exogenous noise is far more subtle than in a unique equilibrium model. After sufficiently small shocks the system will indeed revert to the same equilibrium but larger ones will move the system to a different one (at the same model parameters). The path to this new equilibrium may be very long with a highly unpredictable endpoint. At certain model parameters exogenously-triggered runaway inflation can occur. \endgraf Finally, we analyze a variant model in which the same form of sticky response is introduced into the interest rate rule instead.
References:
[1] Anderson, S. P., Palma, A. de, Thisse, J.-F.: Discrete choice theory of product differentiation. J. Econ. Literature 31 (1993), 1972. MR 1201148
[2] Antinolfi, G., Azariadis, C., Bullard, J. B.: Monetary policy as equilibrium selection. Review, Federal Reserve Bank of St. Louis 89 (2007), 331-342.
[3] Arnold, M., Begun, N., Gurevich, P., Kwame, E., Lamba, H., Rachinskii, D.: Dynamics of discrete time systems with a hysteresis stop operator. SIAM J. Appl. Dyn. Syst. 16 (2017), 91-119. DOI 10.1137/16M1073522 | MR 3592068 | Zbl 1361.37076
[4] Benhabib, J., Farmer, R. E. A.: Indeterminacy and sunspots in macroeconomics. Handbook Macroeconomics 1 (1999), 387-448. DOI 10.1016/S1574-0048(99)01009-5
[5] Bick, A.: Threshold effects of inflation on economic growth in developing countries. Econ. Lett. 108 (2010), 126-129. DOI 10.1016/j.econlet.2010.04.040
[6] Branch, W. A.: Sticky information and model uncertainty in survey data on inflation expectations. J. Econ. Dyn. Control 31 (2007), 245-276. DOI 10.1016/j.jedc.2005.11.002 | Zbl 1162.91457
[7] Brock, W. A., Hommes, C. H.: A rational route to randomness. Econometrica 65 (1997), 1059-1095. DOI 10.2307/2171879 | MR 1475075 | Zbl 0898.90042
[8] Calvo, G. A.: Staggered prices in a utility-maximizing framework. J. Monetary Econ. 12 (1983), 383-398. DOI 10.1016/0304-3932(83)90060-0
[9] Carroll, C. D.: Macroeconomic expectations of households and professional forecasters. Q. J. Econ. 118 (2003), 269-298. DOI 10.1162/00335530360535207 | Zbl 1057.91054
[10] Colander, D., Howitt, P., Kirman, A., Leijonhufvud, A., Mehrling, P.: Beyond DSGE models: Toward an empirically based macroeconomics. Am. Econ. Rev. 98 (2008), 236-240. DOI 10.1257/aer.98.2.236
[11] Curtin, R.: Inflation expectations and empirical tests: Theoretical models and empirical tests. Inflation Expectations Routledge International Studies in Money and Banking 56. Taylor & Francis, London (2010), 34-61.
[12] Grauwe, P. De: Booms and busts in economic activity: A behavioral explanation. J. Econ. Behavior Organization 83 (2012), 484-501. DOI 10.1016/j.jebo.2012.02.013
[13] Evans, G. W., McGough, B.: Observability and Equilibrium Selection. University of Oregon, Eugene (2015).
[14] Frimpong, J. M., Oteng-Abayie, E. F.: When is inflation harmful? Estimating the threshold effect for Ghana. Am. J. Econ. Business Administration 2 (2010), 232-239. DOI 10.3844/ajebasp.2010.232.239
[15] Göcke, M.: Various concepts of hysteresis applied in economics. J. Econ. Surveys 16 (2002), 167-188. DOI 10.1111/1467-6419.00163
[16] Göcke, M., Werner, L.: Play hysteresis in supply or in demand as part of a market model. Metroeconomica 66 (2015), 339-374. DOI 10.1111/meca.12074 | Zbl 1420.91093
[17] Ishlinskii, A. Y.: Some applications of statistical methods to describing deformations of bodies. Izv. AN SSSR, Techn. Ser. 9 (1944), 580-590.
[18] Kahneman, D., Tversky, A.: Prospect theory: An analysis of decisions under risk. Econometrica 47 (1979), 263-291. DOI 10.2307/1914185 | MR 3618580 | Zbl 0411.90012
[19] Kaldor, N.: The irrelevance of equilibrium economics. Econ. J. 82 (1972), 1237-1255. DOI 10.2307/2231304
[20] Khan, M. S., Senhadji, A. S.: Threshold effects in the relationship between inflation and growth. IMF Staff Papers 48 (2001), 1-21. DOI 10.2307/4621658
[21] Krasnosel'skii, M. A., Pokrovskii, A. V.: Systems with Hysteresis. Springer, Berlin (1989). DOI 10.1007/978-3-642-61302-9 | MR 0987431 | Zbl 0665.47038
[22] Krejčí, P.: Hysteresis and periodic solutions of semilinear and quasilinear wave equations. Math. Z. 193 (1986), 247-264. DOI 10.1007/BF01174335 | MR 0856153 | Zbl 0658.35065
[23] Krejčí, P., Lamba, H., Melnik, S., Rachinskii, D.: Analytical solutions for a class of network dynamics with mechanical and financial applications. Phys. Rev. E 90 (2014), Article ID 032822, 12 pages. DOI 10.1103/PhysRevE.90.032822
[24] Krejčí, P., Lamba, H., Melnik, S., Rachinskii, D.: Kurzweil integral representation of interacting Prandtl-Ishlinskii operators. Discrete Contin. Dyn. Syst., Ser. B 20 (2015), 2949-2965. DOI 10.3934/dcdsb.2015.20.2949 | MR 3402678 | Zbl 1335.47043
[25] Krejčí, P., Lamba, H., Monteiro, G. A., Rachinskii, D.: The Kurzweil integral in financial market modeling. Math. Bohem. 141 (2016), 261-286. DOI 10.21136/MB.2016.18 | MR 3499787 | Zbl 1389.34140
[26] Kremer, S., Bick, A., Nautz, D.: Inflation and growth: New evidence from a dynamic panel threshold analysis. Empir. Econ. 44 (2013), 861-878. DOI 10.1007/s00181-012-0553-9
[27] Lamba, H., Krejčí, P., Rachinskii, D.: The global stability of a class of history-dependent macroeconomic models. Math. Model. Nat. Phenom. 15 (2020), Article ID 49, 24 pages. DOI 10.1051/mmnp/2019061 | MR 4173151 | Zbl 1475.37106
[28] Mankiw, N. G., Reis, R.: Sticky information versus sticky prices: A proposal to replace the New Keynesian Phillips curve. Q. J. Econ. 117 (2002), 1295-1328. DOI 10.1162/003355302320935034 | Zbl 1032.91094
[29] Mankiw, N. G., Reis, R., Wolfers, J.: Disagreement about inflation expectations. NBER Macroecon. Annual 18 (2003), 209-248. DOI 10.1086/ma.18.3585256
[30] Muth, J. F.: Rational expectations and the theory of price movements. Econometrica 29 (1961), 315-335. DOI 10.2307/1909635
[31] Prandtl, L.: Ein Gedankenmodell zur kinetischen Theorie der festen Körper. Z. Angew. Math. Mech. 8 (1928), 85-106 German \99999JFM99999 54.0847.04. DOI 10.1002/zamm.19280080202
[32] Robinson, J.: History versus equilibrium. Indian Econ. J. 21 (1974), 202.
[33] Rudd, J., Whelan, K.: Can rational expectations sticky-price models explain inflation dynamics?. Am. Econ. Rev. 96 (2006), 303-320. DOI 10.1257/000282806776157560
[34] Setterfield, M.: Should economists dispense with the notion of equilibrium?. J. Post Keynesian Econ. 20 (1997), 47-76. DOI 10.1080/01603477.1997.11490138
[35] Vinayagathasan, T.: Inflation and economic growth: A dynamic panel threshold analysis for Asian economies. J. Asian Econ. 26 (2013), 31-41. DOI 10.1016/j.asieco.2013.04.001
Partner of
EuDML logo