Previous |  Up |  Next

Article

Title: Inverse rate-dependent Prandtl-Ishlinskii operators and applications (English)
Author: Al Janaideh, Mohammad
Author: Krejčí, Pavel
Author: Monteiro, Giselle Antunes
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 68
Issue: 6
Year: 2023
Pages: 713-726
Summary lang: English
.
Category: math
.
Summary: In the past years, we observed an increased interest in rate-dependent hysteresis models to characterize complex time-dependent nonlinearities in smart actuators. A natural way to include rate-dependence to the Prandtl-Ishlinskii model is to consider it as a linear combination of play operators whose thresholds are functions of time. In this work, we propose the extension of the class of rate-dependent Prandtl-Ishlinskii operators to the case of a whole continuum of play operators with time-dependent thresholds. We prove the existence of an analytical inversion formula, and illustrate its applicability in the study of error bounds for inverse compensation. (English)
Keyword: hysteresis
Keyword: Prandtl-Ishlinskii operator
Keyword: inverse rate-dependent Prandtl-Ishlinskii operator
MSC: 47J40
MSC: 74N30
idZBL: Zbl 07790543
idMR: MR4669927
DOI: 10.21136/AM.2023.0231-22
.
Date available: 2023-11-23T12:12:02Z
Last updated: 2024-12-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151937
.
Reference: [1] Janaideh, M. Al, Krejčí, P.: An inversion formula for a Prandtl-Ishlinskii operator with time dependent thresholds.Phys. B 406 (2011), 1528-1532. 10.1016/j.physb.2011.01.062
Reference: [2] Janaideh, M. Al, Rakotondrabe, M.: Precision motion control of a piezoelectric cantilever positioning system with rate-dependent hysteresis nonlinearities.Nonlinear Dyn. 104 (2021), 3385-3405. 10.1007/s11071-021-06460-w
Reference: [3] Janaideh, M. Al, Xu, R., Tan, X.: Adaptive estimation of play radii for a Prandtl-Ishlinskii hysteresis operator.IEEE Trans. Control Syst. Technol. 29 (2021), 2687-2695. MR 4583252, 10.1109/TCST.2020.3046019
Reference: [4] Davino, D., Giustiniani, A., Visone, C.: Magnetoelastic energy harvesting: Modeling and experiments.Smart Actuation and Sensing Systems: Recent Advances and Future Challenges IntechOpen, London (2012), 487-512. 10.5772/50892
Reference: [5] Iyer, R. V., Tan, X., Krishnaprasad, P. S.: Approximate inversion of the Preisach hysteresis operator with application to control of smart actuators.IEEE Trans. Autom. Control 50 (2005), 798-810. Zbl 1365.93207, MR 2141996, 10.1109/TAC.2005.849205
Reference: [6] Khasawneh, H. J., Abo-Hammour, Z. S., Saaideh, M. I. Al, Momani, S. M.: Identification of hysteresis models using real-coded genetic algorithms.Eur. Phys. J. Plus 134 (2019), Article ID 507, 17 pages. 10.1140/epjp/i2019-12883-7
Reference: [7] Krejčí, P.: Hysteresis, Convexity and Dissipation in Hyperbolic Equations.GAKUTO International Series. Mathematical Sciences and Applications 8. Gakkotosho, Tokyo (1996). Zbl 1187.35003, MR 2466538
Reference: [8] Krejčí, P.: The Kurzweil integral and hysteresis.J. Phys., Conf. Ser. 55 (2006), 144-154. 10.1088/1742-6596/55/1/014
Reference: [9] Krejčí, P., Janaideh, M. Al, Deasy, F.: Inversion of hysteresis and creep operators.Phys. B 407 (2012), 1354-1356. 10.1016/j.physb.2011.06.020
Reference: [10] Krejčí, P., Kuhnen, K.: Inverse control of systems with hysteresis and creep.IEE Proc., Control Theory Appl. 148 (2001), 185-192. 10.1049/ip-cta:20010375
Reference: [11] Krejčí, P., Lamba, H., Melnik, S., Rachinskii, D.: Kurzweil integral representation of interacting Prandtl-Ishlinskii operators.Discrete Contin. Dyn. Syst., Ser. B 20 (2015), 2949-2965. Zbl 1335.47043, MR 3402678, 10.3934/dcdsb.2015.20.2949
Reference: [12] Krejčí, P., Monteiro, G. A.: Inverse parameter-dependent Preisach operator in thermo-piezoelectricity modeling.Discrete Contin. Dyn. Syst., Ser. B 24 (2019), 3051-3066. Zbl 1421.34030, MR 3986192, 10.3934/dcdsb.2018299
Reference: [13] Krejčí, P., Monteiro, G. A.: Oscillations of a temperature-dependent piezoelectric rod.Nonlinear Anal., Real World Appl. 46 (2019), 403-420. Zbl 1461.74025, MR 3887137, 10.1016/j.nonrwa.2018.10.001
Reference: [14] Kuhnen, K., Krejčí, P.: Compensation of complex hysteresis and creep effects in piezoelectrically actuated systems: A new Preisach modeling approach.IEEE Trans. Autom. Control 54 (2009), 537-550. Zbl 1367.74037, MR 2191546, 10.1109/TAC.2009.2012984
Reference: [15] Leang, K. K., Devasia, S.: Design of hysteresis-compensating iterative learning control for piezo-positioners: Application to atomic force microscopes.Mechatron. 16 (2006), 141-158. 10.1016/j.mechatronics.2005.11.006
Reference: [16] Tan, X., Baras, J. S.: Modeling and control of hysteresis in magnetostrictive actuators.Automatica 40 (2004), 1469-1480. Zbl 1055.93538, MR 2153812, 10.1016/j.automatica.2004.04.006
Reference: [17] Visone, C.: Hysteresis modelling and compensation for smart sensors and actuators.J. Phys., Conf. Ser. 138 (2008), Article ID 012028, 24 pages. 10.1088/1742-6596/138/1/012028
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo