[1] Banerjee A., Gyenis Z.:
Chromatic number of the product of graphs, graph homomorphisms, antichains and cofinal subsets of posets without AC. Comment. Math. Univ. Carolin. 62 (2021), no. 3, 361–382.
MR 4331288
[2] Delhommé C., Morillon M.:
Spanning graphs and the axiom of choice. Rep. Math. Logic 40 (2006), 165–180.
MR 2207308
[4] Friedman H. M.:
Invariant maximalilty and incompleteness. Foundations and Methods from Mathematics to Neuroscience, CSLI Lecture Notes, 213, CSLI Publications, Stanford, 2014, pages 25–51.
MR 3617852
[8] Hajnal A.:
The chromatic number of the product of two $\aleph_{1}$-chromatic graphs can be countable. Combinatorica 5 (1985), no. 2, 137–139.
DOI 10.1007/BF02579376 |
MR 0815579
[9] Halbeisen L., Tachtsis E.:
On Ramsey choice and partial choice for infinite families of $n$-element sets. Arch. Math. Logic 59 (2020), no. 5–6, 583–606.
DOI 10.1007/s00153-019-00705-7 |
MR 4123294
[10] Herrlich H., Howard P., Tachtsis E.:
On special partitions of Dedekind- and Russell-sets. Comment. Math. Univ. Carolin. 53 (2012), no. 1, 105–122.
MR 2880914
[13] Howard P., Saveliev D. I., Tachtsis E.:
On the set-theoretic strength of the existence of disjoint cofinal sets in posets without maximal elements. MLQ Math. Log. Q. 62 (2016), no. 3, 155–176.
DOI 10.1002/malq.201400089 |
MR 3509700
[15] Jech T. J.:
The Axiom of Choice. Stud. Logic Found. Math., 75, North-Holland Publishing Co., Amsterdam, American Elsevier Publishing, New York, 1973.
MR 0396271 |
Zbl 0259.02052
[17] Komjáth P., Totik V.:
Problems and Theorems in Classical Set Theory. Probl. Books in Math., Springer, New York, 2006.
MR 2220838
[20] Mycielski J.:
Some remarks and problems on the coloring of infinite graphs and the theorem of Kuratowski. Acta Math. Acad. Sci. Hungar. 12 (1961), 125–129.
DOI 10.1007/BF02066677 |
MR 0130686
[21] Spanring C.: Axiom of choice, maximal independent sets, argumentation and dialogue games. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, 2014, pages 91–98.
[22] Tachtsis E.:
On Ramsey's theorem and the existence of infinite chains or infinite anti-chains in infinite posets. J. Symb. Log. 81 (2016), no. 1, 384–394.
DOI 10.1017/jsl.2015.47 |
MR 3480974