Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
distributive nearlattice; modal operator; filter
Summary:
We prove that there is a one to one correspondence between monadic finite quasi-modal operators on a distributive nearlattice and quantifiers on the distributive lattice of its finitely generated filters, extending the results given in ``Calomino I., Celani S., González L. J.: Quasi-modal operators on distributive nearlattices, Rev. Unión Mat. Argent. 61 (2020), 339--352".
References:
[1] Abbott J. C.: Semi-boolean algebra. Mat. Vesnik 19 (1967), no. 4, 177–198. MR 0239957
[2] Araújo J., Kinyon M.: Independent axiom systems for nearlattices. Czech. Math. J. 61(136) (2011), no. 4, 975–992. DOI 10.1007/s10587-011-0062-6 | MR 2886250
[3] Calomino I., Celani S. A., González L. J.: Quasi-modal operators on distributive nearlattices. Rev. Un. Mat. Argentina 61 (2020), no. 2, 339–352. DOI 10.33044/revuma.v61n2a10 | MR 4198915
[4] Celani S.: Quasi-modal algebras. Math. Bohem. 126 (2001), no. 4, 721–736. DOI 10.21136/MB.2001.134115 | MR 1869464
[5] Celani S., Calomino I.: Stone style duality for distributive nearlattices. Algebra Universalis 71 (2014), no. 2, 127–153. DOI 10.1007/s00012-014-0269-0 | MR 3183387
[6] Celani S., Calomino I.: On homomorphic images and the free distributive lattice extension of a distributive nearlattice. Rep. Math. Logic 51 (2016), 57–73. MR 3562693
[7] Celani S., Calomino I.: Distributive nearlattices with a necessity modal operator. Math. Slovaca 69 (2019), no. 1, 35–52. DOI 10.1515/ms-2017-0201 | MR 3903625
[8] Chajda I., Halaš R.: An example of a congruence distributive variety having no near-unanimity term. Acta Univ. M. Belii Ser. Math. (2006), no. 13, 29–31. MR 2353310
[9] Chajda I., Halaš R., Kühr J.: Semilattice Structures. Research and Exposition in Mathematics, 30, Heldermann Verlag, Lemgo, 2007. MR 2326262
[10] Chajda I., Kolařík M.: Nearlattices. Discrete Math. 308 (2008), no. 21, 4906–4913. MR 2446101 | Zbl 1151.06004
[11] Cignoli R.: Quantifiers on distributive lattices. Discrete Math. 96 (1991), no. 3, 183–197. DOI 10.1016/0012-365X(91)90312-P | MR 1139446
[12] Cornish W. H., Hickman R. C.: Weakly distributive semilattices. Acta Math. Acad. Sci. Hungar. 32 (1978), no. 1–2, 5–16. DOI 10.1007/BF01902195 | MR 0551490 | Zbl 0497.06005
[13] González L. J.: The logic of distributive nearlattices. Soft Comput. 22 (2018), no. 9, 2797–2807. DOI 10.1007/s00500-017-2750-0
[14] González L. J.: Selfextensional logics with a distributive nearlattice term. Arch. Math. Logic 58 (2019), no. 1–2, 219–243. DOI 10.1007/s00153-018-0628-1 | MR 3902813
[15] González L. J., Calomino I.: A completion for distributive nearlattices. Algebra Universalis 80 (2019), no. 4, Paper No. 48, 21 pages. DOI 10.1007/s00012-019-0622-4 | MR 4040591
[16] González L. J., Calomino I.: Finite distributive nearlattices. Discrete Math. 344 (2021), no. 9, Paper No. 112511, 8 pages. DOI 10.1016/j.disc.2021.112511 | MR 4274211
[17] Halaš R.: Subdirectly irreducible distributive nearlattices. Miskolc Math. Notes 7 (2006), no. 2, 141–146. DOI 10.18514/MMN.2006.140 | MR 2310273 | Zbl 1120.06003
[18] Halmos P. R.: Algebraic logic. I. Monadic Boolean algebras. Compositio Math. 12 (1956), 217–249. MR 0078304
[19] Hickman R.: Join algebras. Comm. Algebra 8 (1980), no. 17, 1653–1685. DOI 10.1080/00927878008822537 | MR 0585925
Partner of
EuDML logo