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Maximal independent sets, variants of chain/antichain

principle and cofinal subsets without AC

Amitayu Banerjee

Abstract. In set theory without the axiom of choice (AC), we observe new rela-
tions of the following statements with weak choice principles.

◦ Plf,c (Every locally finite connected graph has a maximal independent set).
◦ Plc,c (Every locally countable connected graph has a maximal independent

set).

◦ CACℵα
1

(If in a partially ordered set all antichains are finite and all chains
have size ℵα, then the set has size ℵα) if ℵα is regular.

◦ CWF (Every partially ordered set has a cofinal well-founded subset).
◦ PG,H2

(For any infinite graph G = (VG, EG) and any finite graph H =
(VH , EH ) on 2 vertices, if every finite subgraph of G has a homomorphism
into H, then so has G).

◦ If G = (VG, EG) is a connected locally finite chordal graph, then there is
an ordering “<” of VG such that {w < v : {w, v} ∈ EG} is a clique for each
v ∈ VG.

Keywords: variants of chain/antichain principle; graph homomorphism; maximal
independent sets; cofinal well-founded subsets of partially ordered sets; axiom of
choice; Fraenkel–Mostowski (FM) permutation models of ZFA + ¬ AC

Classification: 03E25, 03E35, 06A07, 05C69

1. Introduction

As usual, ZF denotes the Zermelo–Fraenkel set theory without the axiom of

choice (AC), and ZFA is ZF with the axiom of extensionality weakened to allow the

existence of atoms. In this note, we observe new relations of some combinatorial

statements with certain weak forms of AC. Complete definitions of the choice

forms will be given in Definition 2.4.

1.1 Maximal independent sets. H.M. Friedman in [4, Theorem 6.3.2, Theo-

rem 2.4] proved that AC is equivalent to the statement “Every graph has a max-

imal independent set.” (abbreviated here as P) in ZF. C. Spanring in [21] gave

a different argument to prove the result. Consider the following weaker formula-

tions of P .
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◦ Fix n ∈ ω\{0, 1}. We denote by PKn
, the class of those graphs whose

only components are Kn (complete graph on n vertices). We denote

by Pn the statement “Every graph from the class PKn
has a maximal

independent set”.

◦ We denote by Plf,c the statement “Every locally finite connected graph

has a maximal independent set”.

◦ We denote by Plc,c the statement “Every locally countable connected graph

has a maximal independent set”.

In this note, we observe the following.

(1) ACn is equivalent to Pn for every n ∈ ω\{0, 1} in ZF (cf. Section 3,

Proposition 3.2).

(2) ACωfin is equivalent to Plf,c in ZF (cf. Section 3, Proposition 3.3).

(3) UT(ℵ0,ℵ0,ℵ0) implies Plc,c, and Plc,c implies ACℵ0

ℵ0
in ZF (cf. Section 3,

Proposition 3.4).

1.2 A variant of chain/antichain principle. A famous application of the

infinite Ramsey’s theorem is the chain/antichain principle (abbreviated here as

CAC), which states that “Any infinite partially ordered set contains either an in-

finite chain or an infinite antichain”. E. Tachtsis in [22] investigated the possible

placement of CAC in the hierarchy of weak choice principles. P. Komjáth and

V. Totik in [17] proved the following generalized versions of CAC, applying Zorn’s

lemma.

◦ If in a partially ordered set all antichains are finite and all chains are

countable, then the set is countable (cf. [17, Chapter 11, Problem 8]).

◦ If in a partially ordered set all chains are finite and all antichains are

countable, then the set is countable (cf. [17, Chapter 11, Problem 7]).

For each regular ℵα, we denote by CACℵα

1 the statement “if in a partially

ordered set all antichains are finite and all chains have size ℵα, then the set has

size ℵα” and we denote by CACℵα the statement “if in a partially ordered set all

chains are finite and all antichains have size ℵα, then the set has size ℵα”. In [1],

we observed that for any regular ℵα and any 2 ≤ n < ω, CACℵα does not imply

AC−
n in ZFA. In [1], we also observed that CACℵα does not imply “there are no

amorphous sets” in ZFA. In this note, we observe the following.

(1) Let n ∈ ω\{0, 1}. The statement “For every regular ℵα, CAC
ℵα

1 ” implies

neither AC−
n nor “there are no amorphous sets” in ZFA (cf. Section 4,

Theorem 4.3).

(2) CACℵ0

1 implies PACℵ1

fin (Every ℵ1-sized family A of nonempty finite sets

has an ℵ1-sized subfamily B with a choice function.) in ZF (cf. Section 4,

Theorem 4.5).

(3) DC does not imply CACℵ0

1 in ZF (cf. Section 4, Corollary 4.6).
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1.3 Cofinal well-founded subsets and consistency results. L. Halbeisen

and E. Tachtsis in [9, Theorem 10 (ii)], constructed a model of ZFA and proved

that LOC−
2 does not imply LOKW−

4 in ZFA. We construct a similar model of

ZFA and observe the following.

◦ (LOC−
2 + MC) does not imply LOC−

n in ZFA if n ∈ ω such that n = 3

or n > 4 (cf. Section 5, Theorem 5.3).

◦ (LOC−
2 + MC) does not imply CACℵ0

1 in ZFA (cf. Section 5, Corol-

lary 5.4).

We also observe that under certain hypotheses on the group G and the normal

filter F , CWF and CS are true in the resulting permutation model N (cf. Lem-

ma 5.1).

1.4 A generalized formulation of the n-coloring theorem. Fix a natural

number n ∈ ω\{0, 1}. P. Komjáth sketched a proof of the following generalization

of the n-coloring theorem applying BPI: “For any infinite graph G = (VG, EG)

and any finite graph H = (VH , EH), if every finite subgraph of G has a homo-

morphism into H, then so has G.” abbreviated here as PG,H . We denote by

PG,Hn
the above statement if H has n vertices for n ∈ ω\{0, 1}. Clearly, for

every n ∈ ω\{0, 1}, PG,Hn
implies the n-coloring theorem in ZF (consider the

finite graph H to be Kn), and the n-coloring theorem implies ACn in ZF, see [20].

We note that for any integer n ≥ 3, the n-coloring theorem is equivalent to BPI

in ZF, as shown by H. Läuchli in [18]. Consequently, PG,Hn
is equivalent to BPI

in ZF for every integer n ≥ 3. In [1], we observed that if X ∈ {AC3,AC
ω
fin}, then

PG,H2
does not imply X in ZFA. In this note, we observe that AC2 is equivalent

to PG,H2
in ZF (cf. [Section 3, Proposition 3.6]).

1.5 Locally finite connected graphs. Locally finite connected graphs are

studied extensively in graph theory (cf. [3]). We list some graph-theoretical state-

ments restricted to locally finite connected graphs, which follow from ACω
fin in ZF

(cf. [Section 3, Remark 3.9]). Moreover, we prove the following.

(1) ACω
fin implies PG,H in ZF, if G is a locally finite connected graph (cf. [Sec-

tion 3, Proposition 3.7]).

(2) ACω
fin implies the statement “If G = (VG, EG) is a connected locally finite

chordal graph, then there is an ordering “<” of VG such that {w < v :

{w, v} ∈ EG} is a clique for each v ∈ VG” in ZF (cf. [Section 3, Proposi-

tion 3.8]).
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2. Notation, definitions, and known results

Definition 2.1 (Graph-theoretical definitions, and notation). The degree of a ver-

tex v ∈ VG of a graph G = (VG, EG) is the number of edges emerging from v.

A graph G = (VG, EG) is locally finite if every vertex of G has finite degree. We

say that a graph G = (VG, EG) is locally countable if for every v ∈ VG, the set of

neighbors of v is countable. Given a nonnegative integer n, a path of length n in

the graph G = (VG, EG) is a one-to-one finite sequence {xi}0≤i≤n of vertices such

that for each i < n, {xi, xi+1} ∈ EG; such a path joins x0 to xn. The graph G

is connected if any two vertices are joined by a path of finite length. A homo-

morphism from a graph G = (VG, EG) to a graph H = {VH , EH} is a map f

from VG to VH , such that if {v1, v2} ∈ EG then {f(v1), f(v2)} ∈ EH . A good

coloring of a graph G = (VG, EG) with a color set C is a mapping f : VG → C

such that for every {x, y} ∈ EG, f(x) 6= f(y). Fix a natural number n ∈ ω.

A graph G = (VG, EG) is n-colorable if there exists a good coloring of G on n

colors. We denote by Kn, the complete graph on n vertices. We denote by Cn
the circuit of length n. A graph is chordal if it does not contain an induced Cn
for n ≥ 4. An independent set is a set of vertices in a graph, no two of which are

connected by an edge. A set WG ⊆ VG is called a maximal independent set in

G = (VG, EG) if and only if it is independent and there is no independent set W ′
G

such that WG ( W ′
G (cf. [21]). A clique is a set of vertices in a graph, such that

any two of them are joined by an edge.

Definition 2.2 (Chain, antichain, cofinal well-founded subsets). Let (P,≤) be

a partially ordered set or a poset. A subset D ⊆ P is called a chain if (D,≤↾ D)

is linearly ordered. A subset A ⊆ P is called an antichain if no two elements of A

are comparable under “≤”. A subset C ⊆ P is called cofinal in P if for every

x ∈ P there is an element c ∈ C such that x ≤ c. An element p ∈ P is minimal

if for all q ∈ P , (q ≤ p) implies (q = p). A subset W ⊆ P is well-founded if every

nonempty subset V of W has a ≤-minimal element.

Definition 2.3 (Amorphous sets). An infinite set X is called amorphous if X

cannot be written as a disjoint union of two infinite subsets.

Definition 2.4 (A list of choice forms).

(1) The axiom of choice, AC (Form 1 in [12]): Every family of nonempty sets

has a choice function.

(2) The axiom of choice for finite sets, ACfin (Form 62 in [12]): Every family

of nonempty finite sets has a choice function.

(3) ACω
fin (Form 10 in [12]): Every denumerable, i.e. countably infinite, family

of nonempty finite sets has a choice function. We recall two equivalent

formulations of ACω
fin.



Maximal independent sets, variants of chain/antichain principle 141

◦ UT(ℵ0, fin,ℵ0) (Form 10 A in [12]): The union of denumerably many

pairwise disjoint finite sets is denumerable.

◦ PACω
fin (Form 10 E in [12]): Every denumerable family of finite sets

has an infinite subfamily with a choice function.

(4) ACℵ0

ℵ0
(Form 32 A in [12]): Every denumerable family of denumerable

sets has a choice function. We recall the following equivalent formulation

of ACℵ0

ℵ0
.

◦ PACℵ0

ℵ0
(Form 32 B in [12]): Every denumerable set of denumerable

sets has an infinite subset with a choice function.

(5) AC2 (Form 88 in [12]): Every family of pairs has a choice function.

(6) ACn for each n ∈ ω, n ≥ 2 (Form 61 in [12]): Every family of n-element

sets has a choice function. We denote by AC−
n the statement “Every

infinite family A of n-element sets has a partial choice function, i.e.,

A has an infinite subfamily B with a choice function.” (cf. Form 342 (n)

in [12]).

(7) LOC−
n for each n ∈ ω, n ≥ 2, see [9]: Every infinite linearly orderable

family of n-element sets has a partial choice function. We denote by

LOKW−
n the statement “Every infinite linearly orderable family A of n-

element sets has a partial Kinna–Wagner selection function, i.e., there ex-

ists an infinite subfamily B of A and a function f such that dom(f) = B

and for all B ∈ B, ∅ 6= f(B) ( B (f is called a Kinna–Wagner selection

function for B).” (cf. Definition 1 (2) of [9]).

(8) Van Douwen’s choice principle, vDCP, see [14]: Every family X = {(Xi,

≤i) : i ∈ I} of linearly ordered sets isomorphic with (Z,≤) (“≤” is the

usual ordering on Z) has a choice function.

(9) The axiom of multiple choice, MC (Form 67 in [12]): Every family A of

nonempty sets has a multiple choice function, i.e., there is a function f

with domain A such that for every A ∈ A, f(A) is a nonempty finite

subset of A.

(10) MC(n) where n ≥ 2 is an integer, see [14]: For every family {Xi : i ∈ I}

of nonempty sets, there is a function F with domain I such that for all

i ∈ I, we have that F (i) is a finite subset of Xi and gcd(n, |F (i)|) = 1.

(11) LW (Form 90 in [12]): Every linearly-ordered set can be well-ordered.

(12) ACLO (Form 202 in [12]): Every linearly ordered family of nonempty sets

has a choice function.

(13) ACWO (Form 40 in [12]): Every well-ordered family of nonempty sets has

a choice function.

(14) DCκ for an infinite well-ordered cardinal κ (Form 87(κ) in [12]): Let κ

be an infinite well-ordered cardinal (i.e., κ is an ℵ). Let S be a nonempty
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set and let R be a binary relation such that for every α < κ and every

α-sequence s = (sε)ε<α of elements of S there exists y ∈ S such that

sRy. Then there is a function f : κ → S such that for every α < κ,

(f ↾ α)Rf(α). We note that DCℵ0
is a reformulation of DC (the principle

of dependent choices (Form 43 in [12])). We denote by DC<λ the asser-

tion DCη for all η < λ.

(15) UT(WO,WO,WO) (Form 231 in [12]): The union of a well-ordered col-

lection of well-orderable sets is well-orderable.

(16) For all α UT(ℵα,ℵα,ℵα) (Form 23 in [12]): For every ordinal α, if A and

every member of A has cardinality ℵα, then
∣

∣

⋃

A
∣

∣ = ℵα.

(17) ℵ1 is regular (Form 34 in [12]).

(18) The Boolean prime ideal theorem, BPI (Form 14 in [12]): Every Boolean

algebra has a prime ideal. We recall the following equivalent formulation

of BPI.

◦ The n-coloring theorem for n ≥ 3, (Form 14 G (n) (n ∈ ω, n ≥ 3)

in [12]): For every graph G = (VG, EG) if every finite subgraph

of G is n-colorable then G is n-colorable. This is De Bruijn–Erdős

theorem for n ≥ 3 colorings.

(19) Marshall Hall’s theorem, MHT (Form 107 in [12]): If S is a set and

{Si}i∈I is an indexed family of finite subsets of S, then if the following

property (P) holds,

(P) For every finite F ⊆ I, there is an injective choice function for {Si}i∈F .

then there is an injective choice function for {Si}i∈I .

(20) Dilworth’s decomposition theorem for infinite posets of finite width, DT

(cf. [24]): If P is an arbitrary poset, and k is a natural number such that

P has no antichains of size k+ 1 while at least one k-element subset of P
is an antichain, then P can be partitioned into k chains.

(21) Rado’s selection lemma, RSL (Form 99 in [12]): Let F be a family of finite

sets and suppose that to every finite subset F of F there corresponds

a choice function ϕF whose domain is F such that ϕF (T ) ∈ T for each

T ∈ F . Then there is a choice function f whose domain is F with the

property that for every finite subset F of F , there is a finite subset F ′

of F such that F ⊆ F ′ and f(T ) = ϕF ′(T ) for all T ∈ F .

(22) The antichain principle (Form 89 in [12]): Every partially ordered set has

a maximal antichain.

(23) The chain/antichain principle, CAC (Form 217 in [12]): Every infinite

poset has an infinite chain or an infinite antichain.

(24) There are no amorphous sets (Form 64 in [12]).
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(25) CS, see [13]: Every poset without a maximal element has two disjoint

cofinal subsets.

(26) CWF, see [23]: Every poset has a cofinal well-founded subset.

(27) A weaker form of  Loś’s lemma, LT (Form 253 in [12]): If A = 〈A,RA〉

is a nontrivial relational L-structure over some language L, and U be

an ultrafilter on a nonempty set I, then the ultrapower AI/U and A are

elementarily equivalent.

2.1 Group-theoretical facts. A group G acts on a set X if for each g ∈ G

there is a mapping x → gx of X into itself, such that 1x = x for every x ∈ X

and h(gx) = (hg)x for every g, h ∈ G. Alternatively, actions of a group G on

a set X are the same as group homomorphisms from G to Sym(X). Suppose

that a group G acts on a set X . Let OrbG(x) = {gx : g ∈ G} be the orbit of

x ∈ X under the action of G, and StabG(x) = {g ∈ G : gx = x} be the stabilizer

of x under the action of G. The Orbit-Stabilizer theorem states that the size of

the orbit is the index of the stabilizer, that is |OrbG(x)| = [G : StabG(x)]. We

also recall that different orbits of the action are disjoint and form a partition

of X , i.e., X =
⋃

{OrbG(x) : x ∈ X}. An alternating group is the group of even

permutations of a finite set. Let {Gi : i ∈ I} be an indexed collection of groups.

Define the following set:

(1)

weak
∏

i∈I

Gi =

{

f : I →
⋃

i∈I

Gi : (∀ i ∈ I) f(i) ∈ Gi, f(i) = 1Gi
for all

but finitely many i

}

.

The weak direct product of the groups {Gi : i ∈ I} is the set
∏weak
i∈I Gi with

the operation of component-wise multiplicative defined for all f, g ∈
∏weak
i∈I Gi by

(fg)(i) = f(i)g(i) for all i ∈ I.

2.2 Permutation models. We start with a ground model M of ZFA + AC

where A is a set of atoms. Each permutation of A extends uniquely to a permu-

tation of M by ε-induction. A permutation model N of ZFA is determined by

a group G of permutations of A and a normal filter F of subgroups of G. Let G

be a group of permutations of A and F be a normal filter of subgroups of G. For

x ∈ M , we denote the symmetric group with respect to G by symG(x) = {g ∈ G:

g(x) = x}. We say x is F-symmetric if symG(x) ∈ F and x is hereditarily F-

symmetric if x and all elements of its transitive closure are F -symmetric. We

define the permutation model N with respect to G and F , to be the class of all

hereditarily F -symmetric sets. We recall that N is a model of ZFA (cf. [15, The-

orem 4.1]). If I ⊆ P(A) is a normal ideal, then the filter base {fixGE : E ∈ I}
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generates a normal filter over G, where fixGE denotes the subgroup {ϕ ∈ G : ∀ y ∈

E(ϕ(y) = y)} of G. Let I be a normal ideal generating a normal filter FI over G.

Let N be the permutation model determined by M,G, and FI . We say E ∈ I

supports a set σ ∈ N if fixGE ⊆ symG(σ).

Lemma 2.5. The following hold:

(1) In every Fraenkel–Mostowski permutation model, CS implies vDCP (cf.

[13, Theorem 3.15 (3)]).

(2) In ZFA, CWF implies LW (cf. [23, Lemma 5]).

(3) In ZFA, MC implies CS (cf. [13, Theorem 3.12]).

In this paper,

◦ Fix a natural number n ≥ 2. We denote by N 1
HT (n) the permutation

model constructed in [9, Theorem 8].

◦ We denote by N1 the basic Fraenkel model.

◦ We denote by N 2
HT the permutation model constructed in [9, Theo-

rem 10 (ii)].

◦ We denote by N2 the Second Fraenkel model.

◦ Fix a prime p ∈ ω. We denote by N22(p) the permutation model con-

structed in [14, Section 4.4].

◦ Fix a natural number n such that n = 3 or n > 4 and an infinite well-

ordered cardinal number κ. We denote byMκ,n the permutation model

constructed in Theorem 5.3.

2.3 Loeb’s theorem. A topological space (X, τ) is called compact if for every

U ⊆ τ such that
⋃

U = X there is a finite subset V ⊆ U such that
⋃

V = X .

Lemma 2.6 ([19, Theorem 1]). Let {Xi}i∈I be a family of compact spaces which

is indexed by a set I on which there is a well-ordering “≤”. If I is an infinite set

and there is a choice function F on the collection {C : C is closed, C 6= ∅, C ⊂ Xi

for some i ∈ I}, then the product space
∏

i∈I Xi is compact in the product

topology.

2.4 A theorem of Fulkerson and Gross. D.R. Fulkerson and O.A. Gross

in [5] proved the following lemma.

Lemma 2.7 (cf. [16, Lemma 1], [5]). A finite graph (V,X) is chordal if and only

if there is an ordering “<” of V such that {w < v : {w, v} ∈ X} is a clique for

each v ∈ V .
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3. Graph theoretical observations

3.1 Maximal independent set.

Proposition 3.1 (ZF). Every graph based on a well-ordered set of vertices has

a maximal independent set.

Proof: Let G = (VG, EG) be a graph on a well-ordered set of vertices VG =

{vα : α < λ}. Thus we can use transfinite recursion, without using any form of

choice, to construct a maximal independent set. Let M0 = ∅. Clearly, M0 is an

independent set. For any ordinal α, if Mα is a maximal independent set, then we

are done. Otherwise, there is some v ∈ VG\Mα, whereMα ∪ {v} is an independent

set of vertices. In that case, let Mα+1 = Mα ∪ {v}. For limit ordinals α, we use

Mα =
⋃

i∈αMi. Clearly, M =
⋃

i∈λMi is a maximal independent set. �

Proposition 3.2 (ZF). For every n ∈ ω\{0, 1}, Pn is equivalent to ACn.

Proof: (⇐) Fix n ∈ ω\{0, 1}, and let us assume ACn. Let G = (VG, EG)

be a graph from the class PKn
(cf. Section 1.1 for definition of PKn

). Let

{Gi}i∈I = {(VGi
, EGi

)}i∈I be the components of G. By ACn select gi ∈ VGi

for each i ∈ I. We can see that J = {gi : i ∈ I} is a maximal independent set

of G. For any gi, gj ∈ J such that gi 6= gj , we have {gi, gj} 6∈ EG. Consequently,

J is an independent set. For the sake of contradiction, suppose J is not a max-

imal independent set. Then there is an independent set L which must contain

two vertices x and y from VGi
for some i ∈ I. Since {x, y} ∈ EG, we obtain

a contradiction.

(⇒) Fix n ∈ ω\{0, 1}, and let us assume Pn. Consider a system of n-element

sets A = {Ai}i∈I . We construct a graph G = (VG, EG).

Constructing G: Let VG consist of all the pairs (Y, y) such that Y ∈ A and

y ∈ Y , and the edge set is defined as follows {(Y1, y1), (Y2, y2)} ∈ EG if and only

if Y1 = Y2 and y1 6= y2.

Clearly, the components of G are Kn. By Pn, G has a maximal independent

set M . Since M is an independent set, for each Y ∈ A there is at most one

y ∈ Y such that (Y, y) ∈ M . Since M is a maximal independent set, there is

at least one y ∈ Y such that (Y, y) ∈ M . Consequently, M determines a choice

function for A. �

Proposition 3.3 (ZF). ACω
fin is equivalent to Plf,c.

Proof: (⇒) We assume ACω
fin. Let G = (VG, EG) be some nonempty locally

finite, connected graph. Consider some r ∈ VG. Let V0 = {r}. For each integer

n ≥ 1, define Vn = {v ∈ VG : dG(r, v) = n} where “dG(r, v) = n” means there

are n edges in the shortest path joining r and v. Each Vn is finite by locally

finiteness of G, and VG =
⋃

n∈ω Vn by connectedness of G. By UT(ℵ0, fin,ℵ0)
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(which is equivalent to ACω
fin (cf. Definition 2.4)), VG is countable. Consequently,

VG is well-ordered. The rest follows from Proposition 3.1.

(⇐) We assume Plf,c. Since ACω
fin is equivalent to its partial version PACω

fin

(cf. Definition 2.4 or [12]), it suffices to show PACω
fin. Let A = {An : n ∈ ω} be

a denumerable set of nonempty finite sets. Without loss of generality, we assume

that A is disjoint. Consider a denumerable sequence T = {tn : n ∈ ω} disjoint

from A. We construct a graph G = (VG, EG).

• • • . . .

A1

•
t1

• • • . . .

A2

•
t2

. . .

. . .

Figure 1. The graph G.

Constructing G: Let VG =
(
⋃

n∈ω An
)

∪ T . For each n ∈ ω, let {tn, tn+1} ∈ EG
and {tn, x} ∈ EG for every element x ∈ An. Also for each n ∈ ω, and any two

x, y ∈ An such that x 6= y, let {x, y} ∈ EG, see Figure 1.

Clearly, the graph G is connected and locally finite. By assumption, G has

a maximal independent set of vertices, say M . Since M is maximal, M has to be

infinite. Moreover, for each i ∈ ω, either ti ∈ M or some v ∈ Ai is in M . Since

M is an independent set, for each i ∈ ω there is at most one v ∈ Ai such that

v ∈M . Define M ′ = {v ∈M : v ∈ Ai for some i ∈ ω}. If M ′ is finite, then since

{tn, tn+1} ∈ EG for all n ∈ ω, it follows that for some n ∈ ω,M∩(An∪{tn}) = ∅.

Then for any u ∈ An, M ∪ {u} is an independent set which properly contains M ,

contradicting M ’s being a maximal independent set. Thus M ′ is infinite, which

clearly yields a partial choice function for A. �

Proposition 3.4 (ZF). UT (ℵ0,ℵ0,ℵ0) implies Plc,c, and Plc,c implies ACℵ0

ℵ0
.

Proof: In order to prove the first implication, let G = (VG, EG) be some non-

empty locally countable connected graph. Consider some r ∈ VG. Let V0 = {r}.

For each integer n ≥ 1, define Vn = {v ∈ VG : dG(r, v) = n}. Since G is locally

countable, each Vn is countable by UT(ℵ0,ℵ0,ℵ0). Also VG =
⋃

n∈ω Vn since G

is connected. By UT(ℵ0,ℵ0,ℵ0), VG is countable. The rest follows from Propo-

sition 3.1. The second assertion follows from the arguments of Proposition 3.3,

since ACℵ0

ℵ0
is equivalent to PACℵ0

ℵ0
in ZF (cf. Definition 2.4 or [12]). �
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Remark 3.5. Fix n ∈ ω\{0, 1}. We denote by PCn
, the class of those graphs

whose only components are Cn. We denote by P ′
n the statement “Every graph

from the class PCn
has a maximal independent set”. We remark that ACPn

implies

P ′
n in ZF where Pn is the Perrin number of n. Perrin numbers are defined by

the recurrence relation P (n) = P (n− 2) + P (n− 3) for n > 2, where the initial

values are P (0) = 3, P (1) = 0, and P (2) = 2. Let G = (VG, EG) be a graph from

the class PCn
. Let {Gi}i∈I = {(VGi

, EGi
)}i∈I be the components of PCn

. LetMi

be the collection of different maximal independent sets of Gi for each i ∈ I. Since

the number of different maximal independent sets in each component is Pn
1, by

ACPn
we can choose a mi ∈ Mi for each i ∈ I. Clearly,

⋃

i∈I mi is a maximal

independent set of G.

3.2 The graph homomorphism problem.

Proposition 3.6 (ZF). PG,H2
is equivalent to AC2.

Proof: As mentioned in Subsection 1.4, for any n ∈ ω\{0, 1}, PG,Hn
implies

ACn. We prove that AC2 implies PG,H2
in ZF. Let H = (VH , EH) be a graph

such that VH = {v1, v2}, and G = (VG, EG) be an infinite graph. We assume

that every finite subgraph of G has a homomorphism into H . Let I be the set

of components of G.

Case 1. Let {v1, v1} ∈ EH or {v2, v2} ∈ EH . If {v1, v1} ∈ EH , then for any

G′ = (VG′ , EG′) ∈ I, fG′ : G′ → H defined by fG′(x) = v1 for every x ∈ VG′ ,

is a homomorphism from G′ to H . The function f : G → H , defined by f(x) =

fG′(x) for G′ = (VG′ , EG′) ∈ I and x ∈ VG′ , is a homomorphism from G to H .

The case {v2, v2} ∈ EH is similar.

Case 2. Let EH = {{v1, v2}}. We follow the proof of the fact that AC2 implies

the 2-coloring problem in ZF (cf. [20]). Fix an arbitrary G′ = (VG′ , EG′) ∈ I

and select an arbitrary element a ∈ VG′ . The function fG′ : G′ → H defined by

fG′(v) = v1 if there is an odd number of vertices between a and v in the shortest

path from a to v and fG′(v) = v2 otherwise, is a homomorphism from G′ to H .

Clearly, the set of homomorphisms ϕ : G′ → H contains precisely two elements.

By AC2, there exists a family {fG′}G′∈I of homomorphisms fG′ : G′ → H . The

function f : G → H , defined by f(x) = fG′(x) for G′ = (VG′ , EG′) ∈ I and

x ∈ VG′ is a homomorphism from G to H .

Case 3. Let EH = ∅. Then G must be a discrete graph with no edges (by the

assumption that every finite subgraph of G has a homomorphism intoH) and any

possible mapping of vertices from VG to either v1 or v2 gives a homomorphism.

1We use the fact that the number of different maximal independent sets in an n-vertex cycle

graph is the nth Perrin number for 1 < n < ω (cf. [6]).
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Define a function f : G → H such that x 7→ v1 for each x ∈ VG. Clearly, f is

a homomorphism from G into H without using any form of choice. �

3.3 Locally finite connected graphs.

Proposition 3.7 (ZF). ACω
fin implies PG,H , if G is locally finite and connected.

Proof: Let G = (VG, EG) be some nonempty locally finite, connected graph.

Consider some r ∈ VG. Let V0 = {r}. For each integer n ≥ 1, define Vn =

{v ∈ VG : dG(r, v) = n}. Each Vn is finite by locally finiteness of G, and VG =
⋃

n∈ω Vn by connectedness of G. By ACω
fin, VG is countable. We know that PG,H

holds in ZF, if G is based on a well-ordered set of vertices (cf. [1]). �

Proposition 3.8 (ZF). ACω
fin implies the statement “If (V,X) is a connected

locally finite chordal graph, then there is an ordering “<” of V such that {w < v:

{w, v} ∈ X} is a clique for each v ∈ V .”.

Proof: We note that by arguments in the proof of Proposition 3.7, it is enough

to see that the statement “If (V,X) is a chordal graph based on a well-orderable

set of vertices, then there is an ordering “<” of V such that {w < v : {w, v} ∈ X}

is a clique for each v ∈ V .” is provable in ZF. By Lemma 2.7, each finite subgraph

(W,X |W ) has an ordering such that {w < v : {w, v} ∈ X ↾ W} is a clique for

every v ∈ W . We can encode every total ordering of a set W by a choice of

one of “<,=, >” for each pair (x, y) ∈ W × W . Endow {<,=, >} with the

discrete topology and T = {<,=, >}V×V with the product topology. Since V is

well-ordered, V × V is well-ordered in ZF. Consequently, {<,=, >}× {V × V } is

well-ordered in ZF. By Lemma 2.6, T is compact. We use the compactness of T

to prove the existence of the desired ordering. �

Remark 3.9. We list some other graph-theoretical statements from different

papers, restricted to locally finite connected graphs, which are related to ACω
fin.

(1) P. Komjáth and F. Galvin in [7] proved that any graph based on a well-

ordered set of vertices has a chromatic number and an irreducible good

coloring in ZF. Consequently, the statements “any locally finite connected

graph has a chromatic number” and “any locally finite connected graph

has an irreducible good coloring” are provable under ACω
fin in ZF.

(2) A. Hajnal in [8, Theorem 2] proved that if the chromatic number of

a graph G1 is finite (say k < ω), and the chromatic number of another

graph G2 is infinite, then the chromatic number of G1 × G2 is k. In [1]

we observed that if G1 is based on a well-ordered set of vertices, then the

following statement holds in ZF.

“χ(EG1
) = k < ω and χ(EG2

) ≥ ω implies χ(EG1×G2
) = k.”
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Consequently, under ACω
fin the above statement holds in ZF if G1 is a lo-

cally finite connected graph.

(3) C. Delhommé and M. Morillon in [2] proved that ACω
fin is equivalent to

the statement “Every locally finite connected graph has a spanning tree.”

in ZF.

(4) The n-coloring theorem restricted to locally finite connected graphs is

provable under ACω
fin in ZF by Proposition 3.7.

4. A variant of CAC

E. Tachtsis communicated to us the following lemma.

Lemma 4.1. The following holds.

(1) UT(ℵ0,ℵ0,ℵ0) implies the statement “If (P,≤) is a poset such that P is

well-ordered, and if all antichains in P are finite and all chains in P are

countable, then P is countable”.

(2) “ℵ1 is regular” implies the statement “If (P,≤) is a poset such that P is

well-ordered, and if all antichains in P are finite and all chains in P are

countable, then P is countable”.

Proof: We prove (1). Let (P,≤) be a poset such that P is well-ordered, all

antichains in P are finite, and all chains are countable. Fix a well-ordering “�”

of P . By way of contradiction, assume that P is uncountable.2 We construct

an infinite antichain to obtain a contradiction. Since P is well-ordered by “�”,

we may construct (via transfinite induction) a maximal ≤-chain, V0 say, without

invoking any form of choice. Since V0 is countable, it follows that P − V0 is

uncountable and every element of P −V0 is incomparable to some element of V0.

Thus P − V0 =
⋃

{Wp : p ∈ V0}, where Wp is the set of all elements of P − V0
which are incomparable to p. Since P −V0 is uncountable and V0 is countable, it

follows by UT(ℵ0,ℵ0,ℵ0) that Wp is uncountable for some p in V0. Let p0 be the

least (with respect to “�”) such element of V0. Now, construct a maximal≤-chain

in (the uncountable set) Wp0 , V1 say, and let (similarly to the above argument)

p1 be the least (with respect to “�”) element of V1 such that the set Wp1 of

all elements of Wp0 which are incomparable to p1 is uncountable. Continuing

in this fashion by induction (and noting that the process cannot stop at a finite

2Since we consider set theory without choice, we note that a setX is uncountable if |X| 6≤ ℵ0.
We also note that without choice, “uncountable” may not generally have a clear meaning; for
example, another definition could be that X is uncountable if ℵ0 < |X| (meaning that there is
an injection from ω into X but not vice versa). The above two definitions are clearly equivalent

in ZFC, but they are not equivalent in ZF.
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stage), we obtain a countably infinite antichain {pn : n ∈ ω}, contradicting the

assumption that all antichains are finite. Therefore, P is countable.

Similarly, we can prove (2). �

Modifying Lemma 4.1, we may observe that UT(ℵα,ℵα,ℵα) implies the state-

ment “If (P,≤) is a poset such that P is well-ordered, and if all antichains in P

are finite and all chains in P have size ℵα, then P has size ℵα.” for any regular

ℵα in ZF.

Corollary 4.2. The statement “If (P,≤) is a poset such that P is well-ordered,

and if all antichains in P are finite and all chains in P are countable, then P is

countable.” holds in any Fraenkel–Mostowski model.

Proof: It follows from the fact that the statement “ℵ1 is a regular cardinal”

holds in every Fraenkel–Mostowski model (cf. [11, Corollary 1]). �

Theorem 4.3 (ZFA). Let n ∈ ω\{0, 1}. The statement “For every regular ℵα,

CACℵα

1 ” implies neither AC−
n nor “there are no amorphous sets”.

Proof: L. Halbeisen and E. Tachtsis in [9, Theorem 8] constructed a permutation

model (we denote by N 1
HT (n)) where for arbitrary n ≥ 2, AC−

n fails but CAC

holds. We fix an arbitrary integer n ≥ 2 and recall the model constructed in the

proof of [9, Theorem 8] as follows.

◦ Defining the ground model M : We start with a ground model M of ZFA

+ AC where A is a countably infinite set of atoms written as a disjoint

union
⋃

{Ai : i ∈ ω} where for each i ∈ ω, Ai = {ai1 , ai2 , . . . , ain} and

|Ai| = n.

◦ Defining the group G and the filter F of subgroups of G:

– Defining G: G is defined in [9] in a way so that if η ∈ G, then η only

moves finitely many atoms and for all i ∈ ω, η(Ai) = Ak for some

k ∈ ω. We recall the details from [9] as follows. For all i ∈ ω, let τi be

the n-cycle ai1 7→ ai2 7→ · · · 7→ ain 7→ ai1 . For every permutation ψ

of ω, which moves only finitely many natural numbers, let ϕψ be

the permutation of A defined by ϕψ(aij ) = aψ(i)j for all i ∈ ω

and j = 1, 2, . . . , n. Let η ∈ G if and only if η = ̺ϕψ where ψ is

a permutation of ω which moves only finitely many natural numbers

and ̺ is a permutation of A for which there is a finite F ⊆ ω such

that for every k ∈ F , ̺ ↾ Ak = τ jk for some j < n, and ̺ fixes Am
pointwise for every m ∈ ω\F .

– Defining F : Let F be the filter of subgroups of G generated by

{fixG(E) : E ∈ [A]<ω}.

◦ Defining the permutation model: Consider the FM-model N 1
HT (n) deter-

mined by M , G and F .
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Following point 1 in the proof of [9, Theorem 8], both A and A = {Ai}i∈ω
are amorphous in N 1

HT (n) and no infinite subfamily B of A has a Kinna–Wagner

selection function. Consequently, AC−
n fails. We prove that for any regular ℵα,

CACℵα

1 holds in N 1
HT (n). Let (P,≤) be a poset in N 1

HT (n) such that all an-

tichains in P are finite and all chains in P have size ℵα. Let E ∈ [A]<ω be

a support of (P,≤). Following the arguments of [22, Claim 3] we can see that

for each p ∈ P , the set OrbE(p) = {ϕ(p) : ϕ ∈ fixG(E)} is an anti-chain in P .

Following the arguments of [22, Claim 4] we can see that P can be expressed as

a well-orderable union of antichains. In fact, O = {OrbE(p) : p ∈ P} is a well-

ordered partition of P . We note that all antichains in P are finite, and hence well-

orderable. Consequently, P is well-orderable in N 1
HT (n) since UT(WO,WO,WO)

holds in N 1
HT (n). We also note that UT(WO,WO,WO) implies UT(ℵα,ℵα,ℵα)

in any FM-model (cf. page 176 of [12]). So, we are done by Lemma 4.1 and the

point noted in the paragraph after Lemma 4.1 (cf. the arguments of [22, Claim 5]

as well). �

Remark 4.4. We can see that in the basic Fraenkel model (labeled as Model N1

in [12]) the statement “For every regular ℵα, CACℵα

1 .” holds. We recall that

UT(WO,WO,WO) holds in N1 (cf. [12]). Fix a regular ℵα. Let (P,≤) be a poset

in N1, and E be a finite support of (P,≤). By the arguments of the proof of

Theorem 4.3, O = {OrbE(p) : p ∈ P} is a well-ordered partition of P . Now for

each p ∈ P , OrbE(p) is an antichain (cf. the proof of [15, claim 9.3]). Thus,

by methods from the proof of Theorem 4.3, CACℵα

1 holds in N1. In N1, the

statement “there are no amorphous sets” is false. For reader’s information we

note that AC−
n and “there are no amorphous sets” are independent of each other.

Theorem 4.5 (ZF). CACℵ0

1 implies PACℵ1

fin .

Proof: Let A = {An : n ∈ ℵ1} be a family of nonempty finite sets. Without

loss of generality, we assume that A is disjoint. Define a binary relation “≤”

on A =
⋃

A as follows: for all a, b ∈ A, let a ≤ b if and only if a = b or

a ∈ An and b ∈ Am and n < m. Clearly, “≤” is a partial order on A. Also,

A is uncountable. The only antichains of (A,≤) are the finite sets An and

subsets of An where n ∈ ℵ1. By CACℵ0

1 , A has an uncountable chain, say C.

Let M = {m ∈ ℵ1 : C ∩ Am 6= ∅}. Since C is a chain and A is the family

of all antichains of (A,≤), we have M = {m ∈ ℵ1 : |C ∩ Am| = 1}. Clearly,

f = {(m, cm) : m ∈M}, where for m ∈M , cm is the unique element of C ∩ Am,

is a choice function of the uncountable subset B = {Am : m ∈M} of A. Thus B

is an ℵ1-sized subfamily of A with a choice function. �

Corollary 4.6. There exists a model of ZF in which DC holds and PACℵ1

fin fails,

and thus CACℵ0

1 also fails.
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Proof: We refer the reader to T. J. Jech [15, Theorem 8.3] by noting that ℵα
therein can be replaced by ℵ1. We also note that the fact that PACℵ1

fin is false in

the model follows immediately from [15, Theorem 8.3 (iii)]. The rest follows from

Theorem 4.5. �

5. Cofinal well-founded subsets in ZFA

E. Tachtsis in [23, Theorem 10 (ii)] proved that CWF holds in the basic Fraenkel

model. P. Howard, D. I. Saveliev and E. Tachtsis in [13, Theorem 3.26], proved

that CS holds in the basic Fraenkel model. We modify the arguments from [13,

Theorem 3.26] and [23, Theorem 10 (ii)] to observe the following.

Lemma 5.1. Let A be a set of atoms. Let G be the group of permutations

of A such that either each η ∈ G moves only finitely many atoms or there is

an n ∈ ω\{0, 1}, such that for all η ∈ G, ηn = 1A. Let F be the normal filter

of subgroups of G generated by {fixG(E) : E ∈ [A]<ω}. Then in the Fraenkel–

Mostowski model N determined by A,G, and F , CS and CWF hold. Conse-

quently, vDCP and LW hold.

Proof: We follow the steps below.

(1) Let (P,≤) be a poset in N and E ∈ [A]<ω be a support of (P,≤). We can

write P as a disjoint union of fixG(E)-orbits, i.e., P =
⋃

{OrbE(p) : p ∈ P}, where

OrbE(p) = {ϕ(p) : ϕ ∈ fixG(E)} for all p ∈ P . The family {OrbE(p) : p ∈ P}

is well-orderable in N since fixG(E) ⊆ SymG(OrbE(p)) for all p ∈ P (cf. the

arguments of [22, Claim 4]).

(2) We prove that OrbE(p) is an antichain in P for each p ∈ P . Otherwise

there is a p ∈ P , such that OrbE(p) is not an antichain in (P,≤). Thus, for

some ϕ, ψ ∈ fixG(E), ϕ(p) and ψ(p) are comparable. Without loss of generality,

we may assume ϕ(p) < ψ(p). Let π = ψ−1ϕ. Consequently, π(p) < p.

Case 1: Suppose there is an n ∈ ω\{0, 1}, such that for every η ∈ G, ηn = 1A.

So πn = 1A. Thus, p = πn(p) < πn−1(p) < · · · < π(p) < p. By transitivity

of “<”, p < p, which is a contradiction.

Case 2: Suppose each η ∈ G moves only finitely many atoms. Then for some

k < ω, πk = 1A. Rest follows from the arguments in Case 1.

(3) We can follow [13, Theorem 3.26] to see that CS holds in N .

(4) Although in every Fraenkel–Mostowski model, CS implies vDCP in ZFA

(cf. Lemma 2.5), we can recall the arguments from the 1st-paragraph of [13,

page 175] to give a direct proof of vDCP in N without invoking CS.

(5) We can follow [23, Theorem 10 (ii)] to see that CWF holds in N .
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(6) Although CWF implies LW in ZFA (cf. Lemma 2.5), we can recall the

arguments from the proof of [9, Theorem 10 (ii)] to give a direct proof of LW

in N without invoking CWF. In particular, using a given linear order in N , the

fact that an element x of N is well-orderable in N if fixG(x) ∈ F and a similar

argument as in Case 1 of step (2), one can verify that LW is true in N without

invoking CWF. �

Remark 5.2. The authors of [13] communicated to the referee that in an unpub-

lished manuscript of theirs, they have shown that MC implies CWF in ZFA. The

referee communicated to us the argument with their kind permission. We quote

their argument for reader’s convenience: “Assume that MC is true. Let (P,≤) be

a (nonempty) poset and also let F be a multiple choice function for P(P )\{∅}.

Using F , a cofinal well-founded subset of P can be recursively defined as fol-

lows: Let A0 = P and B0 = F (A0). Assume that for some ordinal α > 0, sets Aβ
and Bβ are defined for all β < α. Define Aα = {p ∈ P : ∀β < α ∀ q ∈ Bβ (p � q)}

and Bα = F (Aα), if Aα is nonempty. Since On (the class of all ordinal numbers)

is a proper class, there is γ ∈ On such that Aγ = ∅. Clearly, B =
⋃

{Bα : α < γ}

is a cofinal well-founded subset of P .”

5.1 A model of ZFA. H. Herrlich, P. Howard, and E. Tachtsis in [10, Theo-

rem 11, Case 1, Case 2] constructed two different classes of permutation models.

L. Halbeisen and E. Tachtsis in [9, Theorem 10 (ii)] proved that LOC−
2 does not

imply LOKW−
4 in ZFA. For the sake of convenience, we denote by N 2

HT , the

permutation model of [9, Theorem 10 (ii)]. The model N 2
HT is very similar to

the model from [10, Theorem 11, Case 2] except for the fact that in N 2
HT each

permutation ϕ in the group G of permutations of the sets of atoms can move

only finitely many atoms. Fix a natural number n such that n = 3 or n > 4

and an infinite well-ordered cardinal number κ. We construct a model Mκ,n of

ZFA similar to the model constructed in [10, Theorem 11, Case 1], where each

permutation ϕ in the group G of permutations of the sets of atoms can move

only finitely many atoms.

Theorem 5.3. Let n be a natural number such that n = 3 or n > 4 and κ be

an infinite well-ordered cardinal number. Then there is a model Mκ,n of ZFA

where the following hold.

(1) If X ∈ {LOC−
2 ,MC }, then X holds.

(2) LOC−
n fails.

(3) If X ∈ {Pn, PG,Hn
,DT,LT }, then X fails.

Proof: Fix a natural number n such that n = 3 or n > 4 and an infinite

well-ordered cardinal number κ.
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◦ Defining the ground model M : We start with a ground model M of

ZFA + AC where A is a κ-sized set of atoms written as a disjoint union
⋃

{Aα : α < κ}, where Aα = {aα,1, aα,2, . . . , aα,n} such that |Aα| = n for

all α < κ.

◦ Defining the group G and the filter F of subgroups of G:

– Defining G: Let G be the weak direct product of Gα’s where Gα
is the alternating group on Aα for each α < κ. Hence, a permu-

tation η of A is an element of G if and only if for every α < κ,

η ↾ Aα ∈ Gα, and η ↾ Aα = 1Aα
for all but finitely many ordinals

α < κ. Consequently, every element η ∈ G moves only finitely many

atoms.

– Defining F : Let F be the normal filter of subgroups of G generated

by {fixG(E) : E ∈ [A]<ω}.

◦ Defining the permutation model: Consider the permutation modelMκ,n

determined by M,G and F .

(1) If X ∈ {LOC−
2 ,MC}, thenX holds inMκ,n: We note that MC is true in the

modelMκ,n. The proof is fairly similar to the one that MC is true in the Second

Fraenkel model, see [15]. Applying the group-theoretic facts from [10, Theorem 11,

Case 1] and following the arguments of the proof of [9, Theorem 10 (ii)] we may

observe that LOC−
2 holds inMκ,n.

(2) LOC−
n fails in Mκ,n: We prove that in Mκ,n, the well-ordered family

A = {Aα : α < κ} of n-element sets does not have a partial choice function.

For the sake of contradiction, let B be an infinite subfamily of A with a choice

function f ∈ Mn and support E ∈ [A]<ω. Since E is finite, there is an i < κ

such that Ai ∈ B and Ai ∩ E = ∅. Without loss of generality, let f(Ai) = ai1 .

Consider the permutation π which is the identity on Aj for all j ∈ κ − i, and

let (π ↾ Ai)(ai1) = ai2 6= ai1 . Then π fixes E pointwise, hence π(f) = f . So,

f(Ai) = ai2 which contradicts the fact that f is a function. Thus LOC−
n fails

inMκ,n.

(3) If X ∈ {Pn,PG,Hn
,DT,LT }, then X fails in Mκ,n: Since ACn fails in

the model from the arguments of the previous paragraph, Pn fails in the model

by Proposition 3.2. Since ACn fails, PG,Hn
fails as well (cf. Section 1.4). Since

in Mκ,n, the linearly-ordered family A = {Aα : α < κ} of n-element sets does not

have a choice function, DT fails inMκ,n by [24, Theorem 3.1 (ii)]. Since in every

Fraenkel–Mostowski model of ZFA, LT implies ACWO (cf. [25, Theorem 4.6 (i)]),

LT fails in Mκ,n since the well-ordered family A = {Aα : α < κ} does not have

a choice function. �
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Corollary 5.4 (ZFA). (LOC−
2 + MC) does not imply CACℵ0

1 .

Proof: Consider the permutation model Mκ,n constructed in Theorem 5.3 by

letting the infinite well-ordered cardinal number κ to be ℵ1. Rest follows from

Theorem 4.5 and the arguments of Theorem 5.3 (2). �

We note thatMℵ0,n is actually equal to the model of [10, proof of Theorem 11,

Case 1]; for an argument, one follows in much the same way the ideas of [9,

Remark 2, page 589]. Following the arguments in the proof of Theorem 5.3 (3),

we can also observe that DT and LT fail in the model from [9, Theorem 10 (ii)].

Remark 5.5. We recall two more permutation models where MC holds.

◦ We recall that MC holds in the Second Fraenkel model (labeled as Mod-

el N2 in [12]) (cf. [12]).

◦ Fix a prime p ∈ ω. We recall the model N22(p) from [14, Section 4.4].

Let A be the disjoint union of countably many sets of cardinality p, i.e.,

A =
⋃

i∈ω Ai where for each i ∈ ω, Ai = {ai,1, ai,2, . . . , ai,p}. Let G be

the group generated by {ϕi : i ∈ ω} where for each i ∈ ω, ϕi is the cycle

(ai,1, ai,2, . . . , ai,p). Let N22(p) be the model determined by G and the

finite support filter F . P. Howard and E. Tachtsis in [14, Theorem 4.7]

proved that MC(q) holds in N22(p) for every prime q 6= p.

Fix a prime p ∈ ω. Let X ∈ {CS,CWF, vDCP,LW}. Since MC is true in the

model of the proof of Theorem 5.3, N2 and N22(p), X holds in all the mentioned

models by Remark 5.2 and Lemma 2.5. However, we note that Lemma 5.1 can

play under certain premises, independently from MC. In particular, the referee

communicated to us that MC may fail in the following permutation model N—for

example, take A countably infinite, G the group of all finitary permutations of A

and F the finite support filter; then the resulting permutation model is equal to

the basic Fraenkel model, in which MC is false. On the other hand, X is true in the

basic Fraenkel model (cf. [23], [13]). We can use Lemma 5.1 to see that X holds

in the model of the proof of Theorem 5.3, N2 and N22(p), without invoking MC,

because all the models are determined by a group G with the following properties,

and the finite support filter F .

(1) Every permutation ϕ ∈ G moves only finitely many atoms inMκ,n.

(2) We note that N2 was constructed via a group G such that for all ϕ ∈ G,

ϕ2 = 1A.

(3) We note that N22(p) was constructed via a group G such that for all

ϕ ∈ G, ϕp = 1A.
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6. Conclusion

6.1 Synopsis of theorems, propositions, and corollaries.

◦ (ZF) (∀n ∈ ω\{0, 1}) ACn ↔ Pn (cf. Section 3, Proposition 3.2).

◦ (ZF) UT(ℵ0,ℵ0,ℵ0) → Plc,c → ACℵ0

ℵ0
→ ACω

fin ←→ Plf,c (cf. Section 3,

Proposition 3.3, Proposition 3.4).

◦ (ZF) AC2 ←→ PG,H2
(cf. Section 3, Proposition 3.6).

◦ (ZF) BPI ←→ PG,Hn
if n ≥ 3 (cf. Section 1.4).

◦ (ZF) Let G be a locally finite and connected graph.

– ACω
fin → PG,H (cf. Section 3, Proposition 3.7).

– ACω
fin → “If G = (VG, EG) is a chordal graph, then there is an

ordering “<” of VG such that {w < v : {w, v} ∈ EG} is a clique for

each v ∈ VG.” (cf. Section 3, Proposition 3.8).

◦ (ZFA) Let n ∈ ω\{0, 1}. The statement “For every regular ℵα, CAC
ℵα

1 ”

implies neither AC−
n nor “there are no amorphous sets.” (cf. Section 4,

Theorem 4.3).

◦ (ZF) CACℵ0

1 → PACℵ1

fin (cf. Section 4, Theorem 4.5).

◦ (ZF) DC 6→ CACℵ0

1 (cf. Section 4, Corollary 4.6).

◦ (ZFA) Let n ∈ ω such that n = 3 or n > 4. Then (LOC−
2 + MC) 6→ X ,

if X ∈ {LOC−
n ,DT,LT } (cf. Section 5, Theorem 5.3).

◦ (ZFA) (LOC−
2 + MC) 6→ CACℵ0

1 (cf. Section 5, Corollary 5.4).

6.2 Questions and further studies. In this paper, we studied the relationship

of certain weak choice principles, like ACn, AC
ω
fin, AC

ℵ0

ℵ0
, and UT(ℵ0,ℵ0,ℵ0), with

some weaker formulations of P (cf. Section 1.1) in ZF. It would be interesting

to see if some other weak choice principle, like BPI, is equivalent to some weaker

formulation of P in ZF.

For a natural number k < ω, we denote by Qk the following statement.

“χ(EG1
) = k < ω and χ(EG2

) ≥ ω implies χ(EG1×G2
) = k.”

We observed that under ACω
fin the above statement holds in ZF if G1 is a locally

finite connected graph (cf. Remark 3.9 (2)). Moreover, we proved that if X ∈

{AC3,AC
ω
fin}, then Qk 6→ X in ZFA when k = 3 (cf. [1, Section 1]). We recall

the following problem posted in [1].

Question 6.1 ([1, Question 5.2]). If k > 3, does BPI follow from Qk? Otherwise

is there any model of ZF or ZFA, where Qk holds for k > 3, but BPI fails?

In this direction, we ask the following question.

Question 6.2. Is AC2 equivalent to Q3? Otherwise is there any model of ZF

or ZFA, where Q3 fails, but AC2 holds?
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Fix k ∈ ω\{0, 1, 2} and n ∈ ω\{0, 1}. We recall that if X ∈ {PG,Hn
,DT,

MHT,Qk}, then BPI implies X in ZF (cf. [8], [24], [12]). It would be interesting

to see the interrelationship between the above-mentioned implications of BPI

in ZF. For instance, we recall the following open problem posted in [24].

Question 6.3 (cf. [24, Section 4]). Does MHT imply DT?

In this direction, we ask the following question.

Question 6.4. Fix k ∈ ω\{0, 1, 2}. Does MHT imply Qk in ZF?

We list three more open problems related to DT from [24].

Question 6.5 (cf. [24, Section 4]). Is there a model of ZFA in which ACLO is

true, but DT is false?

Question 6.6 (cf. [24, Section 4]). Does RSL imply DT in ZF?

Question 6.7 (cf. [24, Section 4]). Does DT + ACfin imply BPI?

Secondly, we studied the relationship of certain weak choice principles, like

MC, LOC−
2 , DC, AC−

n , and “there are no amorphous sets”, with CACℵ0

1 in ZFA.

It would be interesting to see the relationship of some other weak choice principles

with CACℵ0

1 and CACℵ0 in ZFA. We also observed that under certain hypotheses

on the group G and the normal filter F , CWF is true in the resulting permu-

tation model N (cf. Lemma 5.1). The results that MC implies CWF in ZFA

(cf. Remark 5.2) and CWF implies LW in ZFA (cf. Lemma 2.5) are known. It

would be interesting to see the relationship of CWF with some other weak choice

principles in ZFA. We also list two open problems related to CS from [13].

Question 6.8 ([13, Problem 5.1]). Is CS equivalent to AC in ZF? If not, which

weak choice principles does CS imply? In particular, does CS imply vDCP?

Question 6.9 ([13, Problem 5.3]). Does the antichain principle imply CS?
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[6] Füredi Z., The number of maximal independent sets in connected graphs, J. Graph Theory
11 (1987), no. 4, 463–470.
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