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Metric trees in the Gromov–Hausdorff space

Yoshito Ishiki

Abstract. Using the wedge sum of metric spaces, for all compact metrizable
spaces, we construct a topological embedding of the compact metrizable space

into the set of all metric trees in the Gromov–Hausdorff space with finite pre-
scribed values. As its application, we show that the set of all metric trees is
path-connected and all its nonempty open subsets have infinite topological di-
mension.

Keywords: metric tree; Gromov–Hausdorff distance

Classification: 53C23, 51F99

1. Introduction

In [6], by constructing continuum many geodesics in the Gromov–Hausdorff

space, parametrized by a Hilbert cube, the author proved that sets of all spaces

satisfying some of the doubling property, the uniform disconnectedness, the uni-

form perfectness, and sets of all infinite-dimensional spaces, and the set of all

metric spaces homeomorphic to the Cantor set have infinite topological dimen-

sion.

In [8], by constructing topological embeddings of compact metrizable spaces

into the Gromov–Hausdorff space, the author proved that the set of all compact

metrizable spaces possessing prescribed topological dimension, Hausdorff dimen-

sion, packing dimension, upper box dimension, and Assouad dimension, and the

set of all compact ultrametric spaces are path-connected and have infinite topo-

logical dimension. The proof is based on the direct sum of metric spaces.

In [7], by a similar method to [8] (constructing a topological embedding of com-

pact metrizable spaces), the author proved that each of the sets of all connected,

path-connected, geodesic, and CAT(0) compact metric spaces is path-connected

and all their nonempty open subsets have infinite topological dimension in the

Gromov–Hausdorff space. The proof is based on the l2-product metric of the

direct product of metric spaces.
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As a related work to these author’s papers [6], [8] and [7], in the present paper,

we prove that the set of all metric trees is path-connected and all its nonempty

open subsets have infinite topological dimension in the Gromov–Hausdorff spaces.

In contrast to [8] and [7], we use the wedge sum of metric spaces in the proof.

Let (X, d) be a metric space. Let x, y ∈ X . A subset S of a metric space is said

to be a geodesic segment connecting x and y if there exist a closed interval [a, b]

of R and an isometric embedding f : [a, b] → X such that f(a) = x, f(b) = y, and

S = f([a, b]). A metric space is said to be a geodesic space if for all two points,

there exists a geodesic segment connecting them. A metric space (X, d) is said

to be a metric tree or R-tree if it is a geodesic space and if geodesic segments G1

and G2 connecting x, y and y, z with G1 ∩ G2 = {y} satisfies that G1 ∪ G2 is

a geodesic segment connecting x and z for all distinct x, y, z ∈ X , see [3]. For

a metric space (Z, h), and for subsets A,B of Z, we denote by HD(A,B;Z, h)

the Hausdorff distance of A and B in (Z, h). For metric spaces (X, d) and (Y, e),

the Gromov–Hausdorff distance GH((X, d), (Y, e)) between (X, d) and (Y, e) is

defined as the infimum of all values HD(i(X), j(Y );Z, h), where (Z, h) is a metric

space, and i : X → Z and j : Y → Z are isometric embeddings. We denote

by M the set of all isometry classes of nonempty compact metric spaces. The

space (M,GH) is called the Gromov–Hausdorff space. By abuse of notation, we

represent an element of M as a pair (X, d) of a set X and a metric d rather than

its isometry class. We denote by T the set of all metric trees in M. Our main

result is the following theorem, which is an analogue of [8, Theorem 1.3] and [7,

Theorem 1.1] for metric trees.

Theorem 1.1. Let n ∈ Z≥1. Let {(Xi, di)}
n+1
i=1 be a sequence in T such that

GH((Xi, di), (Xj , dj)) > 0 for all distinct i, j. Let H be a compact metric space

and {vi}
n+1
i=1 be n + 1 different points in H . Then, there exists a topological

embedding Φ: H → T such that Φ(vi) = (Xi, di).

Applying Theorem 1.1 to H = [0, 1]ℵ0 , we obtain:

Corollary 1.2. The set T is path-connected and all its nonempty open subsets

have infinite topological dimension.

We can also obtain an analogue of Theorem 1.1 for rooted (pointed) proper

metric trees, see Subsection 2.5. Since it can be proven by the same method as

Theorem 1.1, we omit the proof.

2. Proof of Theorem

2.1 Metric trees. To prove our results, we first discuss the basic properties of

metric trees. A metric space (X, d) is said to be 0-hyperbolic or satisfy the four
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point condition if

d(x, y) + d(z, t) ≤ max{d(x, z) + d(y, t), d(y, z) + d(x, t)}

for all x, y, z, t ∈ X . The next is proven in [3, Theorem 3.40].

Proposition 2.1. A metric space is a metric tree if and only if it is connected

and 0-hyperbolic.

All metric trees are uniquely geodesic, i.e., for each pair of points, there exists

a unique geodesic segment connecting the two points, see [3, Lemmas 3.5 and 3.20].

Let (X, d) be a metric tree. Based on the fact mentioned above, for x, y ∈ X , we

denote by [x, y] the geodesic segment connecting x and y. We also put [x, y]◦ =

[x, y] \ {x, y}.

Since all metric subspaces of a 0-hyperbolic space is 0-hyperbolic, by Proposi-

tion 2.1, we obtain:

Lemma 2.2. A connected subset S of a metric tree is a metric tree itself. In

particular, for all x, y ∈ S we have [x, y] ⊂ S.

The next is proven in [3, Lemma 3.20].

Lemma 2.3. Let (X, d) be a metric tree. For all o, x, y ∈ X , there exists a unique

q ∈ X such that [o, x] ∩ [o, y] = [o, q].

Let X be a topological space and x ∈ X . We denote by deg(x;X) the cardi-

nality of connected components of X \ {x}. We put

Y3(X) = {x ∈ X : deg(x;X) ≥ 3}, and I2(X) = {x ∈ X : deg(x;X) ≤ 2}.

Note that I2(X) = X \ Y3(X), and note that Y3(X) and I2(X) are invariant

under homeomorphisms.

Lemma 2.4. Let (X, d) be a metric tree. Let C be a connected component of

I2(X). Let o, x, y ∈ C. Then, we have [o, x] ∩ [o, y] = {o}, or [o, x] ⊂ [o, y], or

[o, y] ⊂ [o, x].

Proof: It suffices to show that the negation of the first conclusion ([o, x] ∩

[o, y] 6= {o}) implies either of the other conclusions. By Lemma 2.3, there exists

q ∈ X such that [o, x] ∩ [o, y] = [o, q]. By [o, x] ∩ [o, y] 6= {o}, we have q 6= o.

Suppose that q 6= x and q 6= y. Then we obtain deg(q;X) ≥ 3. Lemma 2.2 implies

that q ∈ C, and hence q ∈ I2(X). This is a contradiction. Thus q = x or q = y,

which leads to the lemma. �

Proposition 2.5. Let (X, d) be a metric tree. If a connected component C of

I2(X) contains at least two points, then C is isometric to an interval of R.
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Proof: Since C is connected, we only need to show the existence of an isometric

embedding of C into R. Take points o, a, b ∈ C such that o ∈ [a, b]◦ ⊂ C. We

define a map f : C → R by

f(x) =

{
d(o, x), if b ∈ [o, x] or x ∈ [o, b];

−d(o, x), if a ∈ [o, x] or x ∈ [o, a].

By Lemma 2.4, and by o 6∈ Y3(X), the map f is well-defined. By the definitions

of f and metric trees, the map f is an isometric embedding. This finishes the

proof. �

Corollary 2.6. Let (X, d) be a metric tree. Then, every connected component C

of I2(X) is isometric to either a singleton or an (non-degenerate) interval of R.

For a metric space (X, d) and a subset A, we denote by diamd(A) the diameter

of A.

Corollary 2.7. Let (X, d) be a metric tree. Then, there exist a set I and

points {al}l∈I and {bl}l∈I in X such that I2(X) =
⋃

l∈I [al, bl] and the set

[al, bl] ∩ [al′ , bl′ ] contains only at most one point for all distinct l, l′ ∈ I, and

diamd([al, bl]) ≤ 1 for all l ∈ I.

Proof: Since every interval of R can be represented as the union of an at most

countable family of closed intervals with diameter less than or equal to 1 such

that the intersection of each pair of different members in the family contains only

at most one point, we obtain the corollary by Proposition 2.5. �

Remark 2.1. In Corollary 2.7, a segment [al, bl] can be degenerated, i.e., it can

happen that al = bl. By recursively applying Proposition 2.13 to the metric tree

[0, 1], we obtain a metric tree (X, d) such that the set Y3(X) is dense in X . For

this metric tree, we observe that I2(X) 6= ∅ and all [al, bl] should be degenerated.

Remark 2.2. In Corollary 2.7, it can happen that I is empty. The metric space R

defined in [12, page 120] is a metric tree such that I2(R) = ∅, see also [1].

2.2 Specific metric trees. To show the existence of a topological embedding

stated in Theorem 1.1, we construct specific metric trees.

Definition 2.1. We put I = [0, 1]. We construct a family of comb-shaped metric

trees parametrized by I. In what follows, we fix a sequence {cn : R → R}n∈Z≥0
of

continuous functions such that for each n ∈ Z≥0, we have cn(s) = 0 for all s ∈

[2−n,∞), and cn(s) ∈ (0, 1] for all s ∈ (−∞, 2−n). To simplify our description, we

represent an element (x, s) of I×I as xs. For example, 00 = (0, 0), and (1/3)1/2 =

(1/3, 1/2). Let w denote the metric on I×I defined by w(xs, yt) = s+ |x−y|+ t if
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s 6= t; otherwise w(xs, yt) = |x− y|. Then, the space (I× I, w) becomes a metric

tree. For each n ∈ Z≥0, put In = {m · 2−(n+1) : m ∈ {0, . . . , 2n+1}}. We also put

J0 = I0 and Jn+1 = In+1 \ In for n ∈ Z≥0. For each s ∈ I, we define a subset

B(s) of I× I by

B(s) = I× {0} ∪
⋃

n∈Z≥0

⋃

a∈Jn

{a} × [0, s · cn(s)].

Let w[s] = w|B(s)2 . Then (B(s), w[s]) is a compact metric tree for all s ∈ I. Note

that (B(0), w[0]) is isometric to I.

By the definition of B(s), we obtain the next two lemmas.

Lemma 2.8. Let s ∈ [0, 1). Then the following hold true.

(1) If s = 0, for all t ∈ I we have HD(B(t),B(0); I× I, w) ≤ t.

(2) If s 6= 0, taking n ∈ Z≥0 with 2−(n+1) ≤ s < 2−n, for all t ∈ I with

|s− t| < 2−(n+2), we have

HD(B(t),B(s); I× I, w) ≤ max
0≤i≤n+1

|s · ci(s)− t · ci(t)|.

Lemma 2.9. Let n ∈ Z≥0 and let s ∈ (0, 2−n). Let C be a connected component

of I2(B(s)). Then we have diamw[s](C) < 2−n.

A topological space is said to be a Hilbert cube if it is homeomorphic to the

countable power of the closed unit interval [0, 1] of R.

We now introduce a family of star-shaped metric trees parametrized by a Hil-

bert cube (Definition 2.2), which was first constructed in [7].

We put C =
∏∞

i=1[2
−2i, 2−2i+1]. Note that every a = {ai}i∈Z≥1

∈ C satisfies

ai < 1 and ai+1 < ai for all i ∈ Z≥1 and limi→∞ ai = 0. We define a metric τ

on C by τ(x, y) = supi∈Z≥1
|xi − yi|. Then, τ generates the topology which

makes C a Hilbert cube.

Definition 2.2. Let a = {ai}i∈Z≥1
∈ C. We supplementally put a0 = 1. Put

Υ = {(0, 0)} ∪ (0, 1]× Z≥0. To simplify our description, we represent an element

(s, i) of Υ as si. For example, 00 = (0, 0), 1n = (1, n), and (1/2)3 = (1/2, 3). We

define a metric R[a] on Υ by

R[a](si, tj) =

{
ai|s− t|, if i = j;

ais+ ajt, otherwise.

Then the space (Υ, R[a]) is a compact metric tree. Note that even if a 6= b, the

metrics R[a] and R[b] generate the same topology on Υ.

The following propositions are [7, Propositions 2.2 and 2.3].
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Proposition 2.10. Let a = {ai}i∈Z≥1
and b = {bi}i∈Z≥1

be in C. Let K,L ∈

(0,∞). If (Υ,K ·R[a]) and (Υ, L ·R[b]) are isometric to each other, then a = b.

Proposition 2.11. For all a,b ∈ C, we obtain

sup
x,y∈Υ

|R[a](x, y) −R[b](x, y)| ≤ 2τ(a,b).

2.3 Amalgamation of metrics. The following proposition shows a way of con-

structing the wedge sum of metric spaces. The statement (2.12) is deduced from

[5, Proposition 3.2]. Proposition 2.12 follows from [11, Proposition 2.6] and the

definition of metric trees. We refer the readers to [2, Lemma 5.24, page 67] for

more general setting.

Proposition 2.12. Let k ∈ Z≥2. Let {(Xi, di)}ki=1 be a sequence of metric

spaces. Assume that there exists a point p such that Xi∩Xj = {p} for all distinct

i, j ∈ {1, . . . , k}. We define a symmetric function h :
(⋃k

i=1 Xi

)2
→ [0,∞) by

h(x, y) =

{
di(x, y), if x, y ∈ Xi;

di(x, p) + dj(p, y), if (x, y) ∈ Xi ×Xj and i 6= j.

Then, the following statements hold true.

(1) The function h is a metric with h|X2

i

= di for all i ∈ {1, . . . , k}.

(2) If each (Xi, di) is a geodesic metric space (metric tree, respectively), then

so is
(⋃k

i=1 Xi, h
)
.

To prove our theorem, we need an operation of replacing edges of a metric tree

by other metric trees.

Definition 2.3. Let (X, d) be a metric tree, and {al}l∈I and {bl}l∈I be families

of points in X satisfying that the segment [al, bl] in X is contained in I2(X)

for all l ∈ I and the intersection of the segments [al, bl] and [al′ , bl′ ] in X is at

most one point for all distinct l, l′ ∈ I. Let {(Tl, el, αl, βl)}l∈I be a family of

quadruples of metric trees (Tl, el) and two specified points αl, βl ∈ Tl such that

el(αl, βl) = d(al, bl). Now we remove the sets [al, bl]
◦ from X , and identify al, bl

with αl, βl, respectively, and consider that X ∩ Tl = {al, bl} and Tl ∩ Tl′ = ∅ for

all distinct l, l′. Let Y denote the resulting set. For x ∈ Y , let E(x) = {al, bl}

and hx = el if x ∈ [al, bl]; otherwise, E(x) = {x} and hx = d. For each x, y ∈ Y ,

we define u(x,y) ∈ E(x) and v(x,y) ∈ E(y) by the points such that d(u(x,y), v(x,y))

is equal to the distance between the sets E(x) and E(y). Note that the points

u(x,y) and v(x,y) uniquely exist and u(x,y) = v(y,x) and v(x,y) = u(y,x). We define

a symmetric function D on Y 2 by D(x, y) = el(x, y) if x, y ∈ [al, bl] for some l;

otherwise D(x, y) = hx(x, u(x,y)) + d(u(x,y), v(x,y)) + hy(v(x,y), y). Then D is
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a metric and the space (Y,D) is a metric tree. We call this space the metric tree

induced from (X, d) replaced by {(Tl, el, αl, βl)}l∈I with respect to {al}l∈I and

{bl}l∈I . Note that since [al, bl] is isometric to [αl, βl], the space (Y,D) contains

the original metric tree (X, d) as a metric subspace.

Proposition 2.13. Let (X, d) be a metric tree. Let {al}l∈I and {bl}l∈I be points

stated in Corollary 2.7. Put Ml = d(al, bl). For each s ∈ I, let (Y (s), D[s]) be

the metric tree induced from (X, d) replaced by {(B(s),Ml ·w[s], 00, 10)}l∈I with

respect to {al}l∈I and {bl}l∈I . Then the following statements hold true.

(1) The space (Y (0), D[0]) is isometric to (X, d).

(2) For all s ∈ I, we have limt→s GH((Y (s), D[s]), (Y (t), D[t])) = 0.

Proof: Since (B(0), w[0]) is isometric to I, the statement (1) holds true. The

statement (2) follows from Lemma 2.8 and Ml ≤ 1 and the inequality

GH((Y (s), D[s]), (Y (t), D[t])) ≤ sup
l∈I

Ml · HD(B(t),B(s); I × I, w).

This finishes the proof. �

2.4 Topological embeddings. For a metric space (X, d), o ∈ X , and r ∈ [0,∞],

we denote byB(o, r) the set of all x ∈ X with d(o, x) ≤ r. Note thatB(x, 0) = {x}

and B(x,∞) = X . The following lemma is deduced from [9, Lemma 1.16].

Lemma 2.14. Let (X, d) be a geodesic space. Let o ∈ X . Then, for all r, r′ ∈

[0,∞) we have HD(B(o, r), B(o, r′);X, d) ≤ |r − r′|.

For every n ∈ Z≥1, we denote by n̂ the set {1, . . . , n}. In what follows, we

consider that the set n̂ is equipped with the discrete topology.

The following proposition has an essential role in the proof of Theorem 1.1. Us-

ing this proposition, Theorem 1.1 can be proven by an elementary argument such

as the pigeonhole principle. Similar propositions are shown in [8, Proposition 4.4]

and [7, Propositions 3.6 and 4.2], proofs of which are based on the direct sum

and direct product of metric spaces, respectively. Unlike these propositions, the

following is based on the wedge sum of metric spaces discussed in Proposition 2.12.

Proposition 2.15. Let n ∈ Z≥1 and m ∈ Z≥2. Let H be a compact metrizable

space, and {vi}
n+1
i=1 be n + 1 different points in H . Put H× = H \ {vi : i =

1, . . . , n + 1}. Let {(Xi, di)}
n+1
i=1 be a sequence of compact metric spaces in T

satisfying that GH((Xi, di), (Xj , dj)) > 0 for all distinct i, j. Then there exists

a continuous map F : H × m̂ → T such that

(1) for all i ∈ n̂+ 1 and k ∈ m̂ we have F (vi, k) = (Xi, di);

(2) for all (u, k), (u′, k′) ∈ H× × m̂ with (u, k) 6= (u′, k′), we have F (u, k) 6=

F (u′, k′).
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Proof: In what follows, we consider that the set [0,∞] is equipped with the

canonical topology homeomorphic to [0, 1]. Since every metrizable space is per-

fectly normal, and since [0,∞] is homeomorphic to [0, 1], for each i ∈ n̂+ 1 we

can take a continuous function σi : H → [0,∞] such that σ−1
i (0) = { vj : j 6= i }

and σ−1
i (∞) = {vi}. We can also take a continuous function ϕ : H → [0, 1/2]

with ϕ−1(0) = { vi : i = 1, . . . , n + 1 }. We put ξ(u) = 32 · ϕ(u). Since H × m̂

is compact and metrizable, there exists a topological embedding ̺ : H × m̂ → C

(this is the Urysohn metrization theorem, see [10]).

For each i ∈ n̂+ 1, let {ai,l}l∈I and {bi,l}l∈I be points in (Xi, di) stated in

Corollary 2.7. Put Mi,l = d(ai,l, bi,l). Then, we have Mi,l ≤ 1. For each s ∈ I,

we denote by (Yi(s), Di[s]) the metric tree induced from (Xi, di) replaced by

{(B(s),Mi,l · w[s], 00, 10)}l∈I with respect to {ai,l}l∈I and {bi,l}l∈I .

For each i ∈ n̂+ 1, we take pi ∈ Xi. For each (u, k) ∈ H × m̂, we denote by

Zi(u, k) the set of all x ∈ Yi(ϕ(u)) with Di[ϕ(u)](x, pi) ≤ σi(u). Let Ei[u, k] de-

note the restricted metric of Di[ϕ(u)] on Zi(u, k). Put (Zn+2(u, k), En+2[u, k]) =

(Υ, ξ(u) ·R[̺(u, k)]) and pn+2 = 10 ∈ Υ.

We identify the n+2 many points {pi : i = 1, . . . , n+2} as a single point, say p,

and we consider that Zi(u, k)∩ Zi′(u, k) = {p} for all distinct i, i′ ∈ n̂+ 1. We put

W (u, k) =
⋃n+2

i=1 Zi(u, k). Applying Proposition 2.12, we obtain a metric g[u, k] on

W (u, k) such that g[u, k]|Zi(u,k)2 = Ei[u, k]. Namely, the space (W (u, k), g[u, k])

is the wedge sum of the spaces {(Zi(u, k), E[u, k])}n+2
i=1 with respect to the points

{pi : i = 1, . . . , n+ 2}.

By (2) in Proposition 2.12, we see that (W (u, k), g[u, k]) is a metric tree for

all (u, k) ∈ H × m̂. By (1) in Proposition 2.13, note that (W (vi, k), g[vi, k]) is

isometric to (Xi, di) for all i ∈ n̂+ 1 and k ∈ m̂. We define F : H × m̂ → T by

F (u, k) =

{
(Xi, di), if u = vi for some i ∈ n̂+ 1;

(W (u, k), g[u, k]), otherwise.

By (2) in Proposition 2.13, and Proposition 2.11 and Lemma 2.14, and the con-

tinuity of each σi, the map F is continuous. By the definition, the condition (1)

is satisfied.

To prove the condition (2) in the proposition, we assume that there exists an

isometry f : (W (u, k), g[u, k]) → (W (u′, k′), g[u′, k′]).

We first show that f(Υ) = Υ. Fix arbitrary (v, l) ∈ H×× m̂. Let P(v, l) be

the set of all connected components of I2(W (v, l)). Take a ∈ Z≥0 with 2−(a+1) ≤

ϕ(v) < 2−a. Let C be a connected component of I2
(⋃n+1

i=1 Zi(v, l)
)
. Then by

Lemma 2.9, and by Mi,l ≤ 1, we have diamg[v,l](C) < 2−a. Since 2−a ≤ 2ϕ(v) =

2−4ξ(v), we obtain diamg[v,l](C) < 2−4ξ(v). Since 2−4 ≤ R[a](00, 11) for all

a ∈ C, we have 2−4ξ(v) ≤ g[v, l](00, 11). By the definitions of Υ and g, we have
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g[v, l](00, 1i+1) < g[v, l](00, 1i) for all i ∈ Z≥0. Thus, we conclude that the subset

[00, 10]
◦∪{10} of Υ is the unique set possessing the maximal diameter of elements

in P(v, l), and the subset [00, 11]
◦ of Υ is the unique set possessing the second

maximal diameter of elements in P(v, l). Putting (v, l) = (u, k), (u′, k′), since f

is an isometry, by the argument discussed above, we obtain f([00, 10]) = [00, 10]

and f([00, 11]) = [00, 11]. This implies that f(00) ∈ {00, 10} and f(00) ∈ {00, 11}.

Thus f(00) = 00, and f(1i) = 1i for all i ∈ {0, 1}.

To prove f(Υ) = Υ, for the sake of contradiction, we suppose that there exists

x ∈ Υ with f(x) 6∈ Υ. Take q ∈ Z≥0 such that x ∈ [00, 1q]. Then, by the construc-

tion of W (u, k), the segment [00, f(x)] must contain 10. Thus, g[u, k](00, 10) ≤

g[u, k](00, x) ≤ g[u, k](00, 1q). Since g[u, k](00, 1i) < g[u, k](00, 10) for all i 6= 0,

we obtain 1q = 10 = x. This contradicts f(10) = 10. Therefore f(Υ) ⊂ Υ. By

replacing the role of f with f−1, we conclude that f(Υ) = Υ.

We now prove the condition (2). By the definition of g, and f(Υ) = Υ, the

spaces (Υ, ξ(u) ·R[̺(u, k)]) and (Υ, ξ(u′) ·R[̺(u′, k′)]) are isometric to each other.

Then, by Proposition 2.10, we have ̺(u, k) = ̺(u′, k′), and hence u = u′ and

k = k′. Therefore we obtain the condition (2). This finishes the proof of Propo-

sition 2.15. �

Proof of Theorem 1.1: The proof of Theorem 1.1 is essentially the same as

[7, Theorem 1.1] and [8, Theorem 1.3]. Put m = n + 2. Let F : H × m̂ → T

be a map stated in Proposition 2.15. For the sake of contradiction, we suppose

that for all k ∈ m̂ we have {(Xi, di) : i = 1, . . . , n + 1} ∩ F (H× × {k}) 6= ∅.

Then, by m = n + 2, and by the pigeonhole principle, there exists two distinct

j, j′ ∈ m̂ such that (Xi, di) ∈ F (H× × {j}) ∩ F (H× × {j′}) for some i ∈ n̂+ 1.

This contradicts the condition (2) in Proposition 2.15. Thus, there exists k ∈ m̂

such that {(Xi, di) : i = 1, . . . , n+1}∩F (H××{k}) = ∅. Therefore, the function

Φ: H → T defined by Φ(u) = F (u, k) is injective, and hence Φ is a topological

embedding since H is compact. This completes the proof of Theorem 1.1. �

2.5 Additional remark. We denote by PM the set of all proper metric spaces

equipped with the pointed Gromov–Hausdorff distance GH*, for the definition

see [4] or [7]. Let PT denote the set of all metric trees in PM. By the same

method as the proof of Theorem 1.1, using [4, Lemma 3.4], we obtain an analogue

of Theorem 1.1 for proper metric trees. We omit the proof of the following.

A similar theorem is proven in [7, Theorem 1.3], and we refer the readers to the

proofs of [7, Theorem 1.3] and Theorem 1.1 in the present paper.

Theorem 2.16. Let n ∈ Z≥1. Let H be a compact metrizable space, and

{vi}
n+1
i=1 be n+1 different points in H . Let {(Xi, di, ai)}

n+1
i=1 be a sequence in PT
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such that GH*((Xi, di, ai), (Xj , dj , aj)) > 0 for all distinct i, j. Then, there exists

a topological embedding Φ: H → PT such that Φ(vi) = (Xi, di, ai).

Corollary 2.17. The set PT is path-connected and its all nonempty open subsets

have infinite topological dimension.
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