Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
total ring of fractions; ring extension; intermediate ring; overring; finite direct product; FIP extension; FCP extension; integrally closed; integral domain; Prüfer domain; valuation domain; normal pair; normal ring; length of ring extension; number of intermediate ring; number of overring
Summary:
We establish several finiteness characterizations and equations for the cardinality and the length of the set of overrings of rings with nontrivial zero divisors and integrally closed in their total ring of fractions. Similar properties are also obtained for related extensions of commutative rings that are not necessarily integral domains. Numerical characterizations are obtained for rings with some finiteness conditions afterwards.
References:
[1] Anderson, D. D., Dobbs, D. E., Mullins, B.: The primitive element theorem for commutative algebras. Houston J. Math. 25 (1999), 603-623 corrigendum ibid 28 2002 217-219. MR 1829123 | Zbl 0999.13003
[2] Ayache, A., Jaballah, A.: Residually algebraic pairs of rings. Math. Z. 225 (1997), 49-65. DOI 10.1007/PL00004598 | MR 1451331 | Zbl 0868.13007
[3] Badawi, A., Jaballah, A.: Some finiteness conditions on the set of overrings of a $\phi$-ring. Houston J. Math. 34 (2008), 397-408. MR 2417400 | Zbl 1143.13010
[4] Bastida, E., Gilmer, R.: Overrings and divisorial ideals of rings of the form $D+M$. Mich. Math. J. 20 (1973), 79-95. DOI 10.1307/mmj/1029001014 | MR 0323782 | Zbl 0239.13001
[5] Nasr, M. Ben: On finiteness of chains of intermediate rings. Monatsh. Math. 158 (2009), 97-102. DOI 10.1007/s00605-008-0090-y | MR 2525924 | Zbl 1180.13008
[6] Nasr, M. Ben: An answer to a problem about the number of overrings. J. Algebra Appl. 15 (2016), Article ID 1650022, 8 pages. DOI 10.1142/S0219498816500225 | MR 3479800 | Zbl 1335.13006
[7] Nasr, M. Ben, Jaballah, A.: Counting intermediate rings in normal pairs. Expo. Math. 26 (2008), 163-175. DOI 10.1016/j.exmath.2007.09.002 | MR 2413833 | Zbl 1142.13004
[8] Nasr, M. Ben, Jaballah, A.: The number of intermediate rings in FIP extension of integral domains. J. Algebra Appl. 19 (2020), Article ID 2050171, 12 pages. DOI 10.1142/S0219498820501716 | MR 4136742 | Zbl 1451.13023
[9] Nasr, M. Ben, Jarboui, N.: New results about normal pairs of rings with zero-divisors. Ric. Mat. 63 (2014), 149-155. DOI 10.1007/s11587-013-0169-1 | MR 3211064 | Zbl 1301.13008
[10] Nasr, M. Ben, Zeidi, N.: A special chain theorem in the set of intermediate rings. J. Algebra Appl. 16 (2017), Articles ID 1750185, 11 pages. DOI 10.1142/S0219498817501857 | MR 3703540 | Zbl 1390.13028
[11] Nasr, M. Ben, Zeidi, N.: When is the integral closure comparable to all intermediate rings. Bull. Aust. Math. Soc. 95 (2017), 14-21. DOI 10.1017/S0004972716000721 | MR 3592540 | Zbl 1365.13011
[12] Davis, E. D.: Overrings of commutative rings. III: Normal pairs. Trans. Am. Math. Soc. 182 (1973), 175-185. DOI 10.1090/S0002-9947-1973-0325599-3 | MR 0325599 | Zbl 0272.13004
[13] Dobbs, D. E., Mullins, B., Picavet, G., Picavet-L'Hermitte, M.: On the FIP property for extensions of commutative rings. Commun. Algebra 33 (2005), 3091-3119. DOI 10.1081/AGB-200066123 | MR 2175382 | Zbl 1120.13009
[14] Dobbs, D. E., Picavet, G., Picavet-L'Hermitte, M.: Characterizing the ring extensions that satisfy FIP or FCP. J. Algebra 371 (2012), 391-429. DOI 10.1016/j.jalgebra.2012.07.055 | MR 2975403 | Zbl 1271.13022
[15] Dobbs, D. E., Shapiro, J.: Normal pairs with zero-divisors. J. Algebra Appl. 10 (2011), 335-356. DOI 10.1142/S0219498811004628 | MR 2795742 | Zbl 1221.13012
[16] Gaur, A., Kumar, R.: Maximal non-Prüfer and maximal non-$\phi$-Prüfer rings. Commun. Algebra 50 (2022), 1613-1631. DOI 10.1080/00927872.2021.1986517 | MR 4391512 | Zbl 1482.13015
[17] Gilmer, R.: Multiplicative Ideal Theory. Pure and Applied Mathematics 12. Marcel Dekker, New York (1972). MR 0427289 | Zbl 0248.13001
[18] Gilmer, R.: Some finiteness conditions on the set of overrings of an integral domain. Proc. Am. Math. Soc. 131 (2003), 2337-2346. DOI 10.1090/S0002-9939-02-06816-8 | MR 1974630 | Zbl 1017.13009
[19] Grothendieck, A.: Éléments de géométrie algébrique. Publ. Math., Inst. Hautes Étud. Sci. 4 (1960), 1-228 French. DOI 10.1007/BF02684778 | MR 0217083 | Zbl 0118.36206
[20] Jaballah, A.: Subrings of $Q$. J. Sci. Technology 2 (1997), 1-13.
[21] Jaballah, A.: A lower bound for the number of intermediary rings. Commun. Algebra 27 (1999), 1307-1311. DOI 10.1080/00927879908826495 | MR 1669083 | Zbl 0972.13008
[22] Jaballah, A.: Finiteness of the set of intermediary rings in normal pairs. Saitama Math. J. 17 (1999), 59-61. MR 1740247 | Zbl 1073.13500
[23] Jaballah, A.: The number of overrings of an integrally closed domain. Expo. Math. 23 (2005), 353-360. DOI 10.1016/j.exmath.2005.02.003 | MR 2186740 | Zbl 1100.13008
[24] Jaballah, A.: Ring extensions with some finiteness conditions on the set of intermediate rings. Czech. Math. J. 60 (2010), 117-124. DOI 10.1007/s10587-010-0002-x | MR 2595076 | Zbl 1224.13011
[25] Jaballah, A.: Numerical characterizations of some integral domains. Monatsh. Math. 164 (2011), 171-181. DOI 10.1007/s00605-010-0205-0 | MR 2837113 | Zbl 1228.13023
[26] Jaballah, A.: Maximal non-Prüfer and maximal non-integrally closed subrings of a field. J. Algebra Appl. 11 (2012), Article ID 1250041, 18 pages. DOI 10.1142/S0219498811005658 | MR 2983173 | Zbl 1259.13004
[27] Jaballah, A.: Graph theoretic characterizations of maximal non-valuation subrings of a field. Beitr. Algebra Geom. 54 (2013), 111-120. DOI 10.1007/s13366-012-0101-y | MR 3027669 | Zbl 1267.13013
[28] Jaballah, A.: Integral domains whose overrings are discrete valuation rings. An. Ştiinţ. Univ. Al. I. Cuza Iaşi, Ser. Nouă, Mat. 62 (2016), 361-369. MR 3680213 | Zbl 1389.13022
[29] Jaballah, A.: The dimension-overrings equation and maximal ideals of integral domains. (to appear) in Beitr. Algebra Geom. DOI 10.1007/s13366-022-00677-5
[30] Jaballah, A., Jarboui, N.: From topologies of a set to subrings of its power set. Bull. Aust. Math. Soc. 102 (2020), 15-20. DOI 10.1017/S0004972720000015 | MR 4120745 | Zbl 1443.05187
[31] Matsumura, H.: Commutative Ring Theory. Cambridge Studies in Advanced Mathematics 8. Cambridge University Press, Cambridge (1989). DOI 10.1017/CBO9781139171762 | MR 1011461 | Zbl 0666.13002
[32] Picavet, G., Picavet-L'Hermitte, M.: FIP and FCP products of ring morphisms. Palest. J. Math. 5 (2016), 63-80. MR 3477616 | Zbl 1346.13013
[33] Stacks Project. Part 1: Preliminaries. Chapter 10: Commutative Algebra. Section 10.37: Normal rings. Lemma 10.37.16. Available at https://stacks.math.columbia.edu/tag/030C
[34] Stacks Project. Part 1: Preliminaries. Chapter 10: Commutative Algebra. Section 10.23: Glueing propertiesLemma 10.23.1. Available at https://stacks.math.columbia.edu/tag/00HN
Partner of
EuDML logo