Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
trivial extension; Ding projective module; Ding injective module
Summary:
Let $R\ltimes M$ be a trivial extension of a ring $R$ by an $R$-$R$-bimodule $M$ such that $M_{R}$, $_{R}M$, $(R,0)_{R\ltimes M}$ and $_{R\ltimes M}(R,0)$ have finite flat dimensions. We prove that $(X,\alpha )$ is a Ding projective left $R\ltimes M$-module if and only if the sequence $M\otimes _R M\otimes _R X\stackrel {M\otimes \alpha }\longrightarrow M\otimes _R X\stackrel {\alpha }\rightarrow X$ is exact and ${\rm coker}(\alpha )$ is a Ding projective left $R$-module. Analogously, we explicitly describe Ding injective $R\ltimes M$-modules. As applications, we characterize Ding projective and Ding injective modules over Morita context rings with zero bimodule homomorphisms.
References:
[1] Auslander, M., Bridger, M.: Stable Module Theory. Memoirs of the American Mathematical Society 94. AMS, Providence (1969). DOI 10.1090/memo/0094 | MR 0269685 | Zbl 0204.36402
[2] Ding, N., Li, Y., Mao, L.: Strongly Gorenstein flat modules. J. Aust. Math. Soc. 86 (2009), 323-338. DOI 10.1017/S1446788708000761 | MR 2529328 | Zbl 1200.16010
[3] Enochs, E. E., Cortés-Izurdiaga, M., Torrecillas, B.: Gorenstein conditions over triangular matrix rings. J. Pure Appl. Algebra 218 (2014), 1544-1554. DOI 10.1016/j.jpaa.2013.12.006 | MR 3175039 | Zbl 1312.16023
[4] Enochs, E. E., Jenda, O. M. G.: Gorenstein injective and projective modules. Math. Z. 220 (1995), 611-633. DOI 10.1007/BF02572634 | MR 1363858 | Zbl 0845.16005
[5] Enochs, E. E., Jenda, O. M. G.: Relative Homological Algebra. de Gruyter Expositions in Mathematics 30. Walter de Gruyter, Berlin (2000). DOI 10.1515/9783110803662 | MR 1753146 | Zbl 0952.13001
[6] Fieldhouse, D. J.: Character modules, dimension and purity. Glasg. Math. J. 13 (1972), 144-146. DOI 10.1017/S0017089500001567 | MR 313319 | Zbl 0258.16028
[7] Fossum, R. M., Griffith, P. A., Reiten, I.: Trivial Extensions of Abelian Categories: Homological Algebra of Trivial Extensions of Abelian Categories with Applications to Ring Theory. Lecture Notes in Mathematics 456. Springer, Berlin (1975). DOI 10.1007/BFb0065404 | MR 0389981 | Zbl 0303.18006
[8] Gillespie, J.: Model structures on modules over Ding-Chen rings. Homology Homotopy Appl. 12 (2010), 61-73. DOI 10.4310/HHA.2010.v12.n1.a6 | MR 2607410 | Zbl 1231.16005
[9] Green, E. L.: On the representation theory of rings in matrix form. Pac. J. Math. 100 (1982), 123-138. DOI 10.2140/pjm.1982.100.123 | MR 661444 | Zbl 0502.16016
[10] Haghany, A., Mazrooei, M., Vedadi, M. R.: Pure projectivity and pure injectivity over formal triangular matrix rings. J. Algebra Appl. 11 (2012), Article ID 1250107, 13 pages. DOI 10.1142/S0219498812501071 | MR 2997449 | Zbl 1280.16002
[11] Holm, H., Jørgensen, P.: Semi-dualizing modules and related Gorenstein homological dimensions. J. Pure Appl. Algebra 205 (2006), 423-445. DOI 10.1016/j.jpaa.2005.07.010 | MR 2203625 | Zbl 1094.13021
[12] Krylov, P., Tuganbaev, A.: Formal Matrices. Algebra and Applications 23. Springer, Cham (2017). DOI 10.1007/978-3-319-53907-2 | MR 3642603 | Zbl 1367.16001
[13] Lam, T. Y.: Lectures on Modules and Rings. Graduate Texts in Mathematics 189. Springer, New York (1999). DOI 10.1007/978-1-4612-0525-8 | MR 1653294 | Zbl 0911.16001
[14] Löfwall, C.: The global homological dimensions of trivial extensions of rings. J. Algebra 39 (1976), 287-307. DOI 10.1016/0021-8693(76)90078-8 | MR 0409608 | Zbl 0325.16022
[15] Mahdou, N., Ouarghi, K.: Gorenstein dimensions in trivial ring extensions. Commutative Algebra and its Applications Walter de Gruyter, Berlin (2009), 291-299. DOI 10.1515/9783110213188.291 | MR 2606294 | Zbl 1177.13033
[16] Mao, L.: Ding modules and dimensions over formal triangular matrix rings. Rend. Semin. Mat. Univ. Padova 148 (2022), 1-22. DOI 10.4171/RSMUP/100 | MR 4542370
[17] Mao, L.: Homological properties of trivial ring extensions. (to appear) in J. Algebra Appl. DOI 10.1142/S0219498823502651
[18] Mao, L., Ding, N.: Gorenstein FP-injective and Gorenstein flat modules. J. Algebra Appl. 7 (2008), 491-506. DOI 10.1142/S0219498808002953 | MR 2442073 | Zbl 1165.16004
[19] Morita, K.: Duality for modules and its applications to the theory of rings with minimum condition. Sci. Rep. Tokyo Kyoiku Diagaku, Sect. A 6 (1958), 83-142. MR 0096700 | Zbl 0080.25702
[20] Nagata, M.: Local Rings. Interscience Tracts in Pure and Applied Mathematics 13. Interscience, New York (1962). MR 0155856 | Zbl 0123.03402
[21] Palmér, I., Roos, J.-E.: Explicit formulae for the global homological dimensions of trivial extensions of rings. J. Algebra 27 (1973), 380-413. DOI 10.1016/0021-8693(73)90113-0 | MR 0376766 | Zbl 0269.16019
[22] Reiten, I.: Trivial Extensions and Gorenstein Rings: Thesis. University of Illinois, Urbana (1971). MR 2621542
[23] Rotman, J. J.: An Introduction to Homological Algebra. Pure and Applied Mathematics 85. Academic Press, New York (1979). MR 538169 | Zbl 0441.18018
[24] Stenström, B.: Coherent rings and FP-injective modules. J. Lond. Math. Soc., II. Ser. 2 (1970), 323-329. DOI 10.1112/jlms/s2-2.2.323 | MR 258888 | Zbl 0194.06602
[25] Yang, G.: Homological properties of modules over Ding-Chen rings. J. Korean Math. Soc. 49 (2012), 31-47. DOI 10.4134/JKMS.2012.49.1.031 | MR 2907540 | Zbl 1247.16006
[26] Yang, G., Liu, Z., Liang, L.: Ding projective and Ding injective modules. Algebra Colloq. 20 (2013), 601-612. DOI 10.1142/S1005386713000576 | MR 3116789 | Zbl 1280.16003
[27] Zhang, P.: Gorenstein-projective modules and symmetric recollements. J. Algebra 388 (2013), 65-80. DOI 10.1016/j.jalgebra.2013.05.008 | MR 3061678 | Zbl 1351.16012
Partner of
EuDML logo