Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
maximal real subfield of cyclotomic field; real quadratic field; class number
Summary:
For any square-free positive integer $m\equiv {10}\pmod {16}$ with $m\geq 26$, we prove that the class number of the real cyclotomic field $\mathbb {Q}(\zeta _{4m}+\zeta _{4m}^{-1})$ is greater than $1$, where $\zeta _{4m}$ is a primitive $4m$th root of unity.
References:
[1] Ankeny, N. C., Chowla, S., Hasse, H.: On the class-number of the maximal real subfield of a cyclotomic field. J. Reine Angew. Math. 217 (1965), 217-220. DOI 10.1515/crll.1965.217.217 | MR 172861 | Zbl 0128.03501
[2] Gica, A.: Quadratic residues of certain types. Rocky Mt. J. Math. 36 (2006), 1867-1871. DOI 10.1216/rmjm/1181069349 | MR 2305634 | Zbl 1139.11004
[3] Hasse, H.: Über mehrklassige, aber eingeschlechtige reell-quadratische Zahlkörper. Elem. Math. 20 (1965), 49-59 German. MR 191889 | Zbl 0128.03502
[4] Hoque, A., Chakraborty, K.: Pell-type equations and class number of the maximal real subfield of a cyclotomic field. Ramanujan J. 46 (2018), 727-742. DOI 10.1007/s11139-017-9963-9 | MR 3826752 | Zbl 1422.11065
[5] Hoque, A., Saikia, H. K.: On the class-number of the maximal real subfield of a cyclotomic field. Quaest. Math. 39 (2016), 889-894. DOI 10.2989/16073606.2016.1188864 | MR 3573387 | Zbl 1423.11190
[6] Lang, S.-D.: Note on the class-number of the maximal real subfield of a cyclotomic field. J. Reine Angew. Math. 290 (1977), 70-72. DOI 10.1515/crll.1977.290.70 | MR 447177 | Zbl 0346.12003
[7] Osada, H.: Note on the class-number of the maximal real subfield of a cyclotomic field. Manuscr. Math. 58 (1987), 215-227. DOI 10.1007/BF01169091 | MR 884993 | Zbl 0602.12002
[8] Takeuchi, H.: On the class-number of the maximal real subfield of a cyclotomic field. Can. J. Math. 33 (1981), 55-58. DOI 10.4153/CJM-1981-006-8 | MR 608854 | Zbl 0482.12004
[9] Yamaguchi, I.: On the class-number of the maximal real subfield of a cyclotomic field. J. Reine Angew. Math. 272 (1975), 217-220. DOI 10.1515/crll.1975.272.217 | MR 366874 | Zbl 0313.12003
Partner of
EuDML logo